
Chapter 4

Genetic Painting: A Salience

Adaptive Relaxation Technique

for Painterly Rendering

In this chapter we build on the single-pass salience adaptive painterly technique of

the previous chapter to propose a novel, relaxation based iterative process which uses

curved spline brush strokes to generate paintings1. We draw upon our previous ob-

servations of artistic practice to define the degree of optimality for a painting to be

measured by the correlation between the salience map of the original image and the

level of detail present in the corresponding painting. We describe a novel genetic algo-

rithm based relaxation approach to search the space of possible paintings and so locate

the optimal painting for a given photograph, subject to this criterion. In this work we

make use of a more subjective, user trained measure of salience2. The quality of the

rendering is further enhanced through the use of context dependent stroke rendering

styles, and compensation for image noise; both are additional novel contributions to

image-space AR.

4.1 Introduction

In the previous chapter we observed a relationship between the importance that artists

assign to artifacts in a scene, and the level of detail and emphasis afforded to such

artifacts in a piece of artwork. We also observed that automatic image-space AR tech-

niques are at odds with this behaviour, emphasising all detail regardless of its salience.

1This work has previously appeared as [24].
2The trainable salience measure we use is described in Section 4.3 and will appear as [66]. The

primary investigator of the measure was Peter Hall (University of Bath), with whom the author collab-
orated. For the purposes of examination, the areas of the measure to which the author has contributed
are clearly indicated in situ within Section 4.3.
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We rectified this discrepancy by developing a novel, single-pass painterly rendering pro-

cess which modelled the artist’s salience adaptive behaviour. The resulting paintings

exhibited improved aesthetics; not only were salient regions painted precisely (strokes

from non-salient regions did not encroach upon and distort regions of greater salience),

but the rendering also exhibited a sense of focus around salient regions due to the

abstraction of non-salient detail. We compared the edge maps of the resulting paint-

ings with the salience maps of their original images, and observed the two to exhibit

qualitatively closer correspondence than when using local frequency response filters to

drive the rendering process (Figure 3-6).

We now build upon the success of this pilot, single-pass salience adaptive rendering tech-

nique (Section 3.3) to propose a novel relaxation based approach to salience adaptive

painting. We build upon our previous observations to define the degree of optimality for

a painting to be measured by the correlation between the salience map of the original

image and level of detail within the corresponding painting. We describe novel salience

based approach to painting which uses a genetic algorithm (GA) relaxation technique

to search the space of possible paintings, and so locate the optimal painting for a given

photograph. In doing so we use a more subjective definition of salience that can be

trained to select features interesting to an individual user, and which performs global

analysis to simultaneously filter and classify low-level features, for example to detect

edges, ridges and corners. A further contribution of our method is that differential

rendering styles are possible by varying stroke style according to the classification of

salient artifacts encountered. Uniquely, we also compensate for noise; a component of

any real image.

There are several advantages that this novel technique holds over our previous single-

pass technique of Section 3.3.

1. Single-pass rendering techniques (such as our pointillist-style algorithm and many

existing image-space AR methods [58, 71, 103, 140, 159]) are highly susceptible to

image noise. Some stroke attributes, such as orientation, are determined by local

sampling of fields obtained through differentiation of the source image; for ex-

ample Sobel intensity gradient fields. This differentiation process often serves to

exaggerate noise present in the image, which manifests as numerical inaccuracies

in the field leading to poor stroke placement or poor setting of visual attributes.

In single-pass techniques, a stroke’s location and visual attributes are determined

once only, after which they remain fixed. One has no guarantee that the com-

positing of multiple, placed strokes will lead to an aesthetically optimal painting;

strokes do not take into account the effect of other strokes in their vicinity. By

contrast, a goal directed iterative painting strategy can approach a more optimal
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Figure 4-1 Section of a painting generated using our salience based relaxation technique,
taken from the fittest individual within the 80th generation of paintings. High resolution
versions of this and other paintings in this chapter are included in the electronic supple-
mentary material in Appendix C.

solution. We describe a GA based relaxation process which iteratively varies the

attributes of strokes, assessing the “fitness” of the entire painting at each itera-

tion (using our salience based optimality criterion), with the aim of producing an

optimal, target painting.

2. We make use of a user-trained salience measure, which users may teach to recog-

nise artifacts which they deem to be perceptually important. As we mention in

Chapter 3, salience is a task specific, subjective concept which can only be ad-

dressed by prescriptive measures at an early visual level. This trainable method

provides a more subjective basis to the problem of determining the salience of

artifacts within an image.

3. Our painterly technique not only drives emphasis in the painting via salience

magnitude, but can also vary stroke rendering style according to the classification

of salience artifact encountered (for example, edge or ridge).

4. Our algorithm composits multiple curved spline strokes to create paintings, rather

than simple daubs of paint. This allows synthesis of paintings exhibiting elegant,

flowing brush strokes, for example in the style of Van Gogh (Figure 4-17, right).

This approach presents a more general painting solution, since the rendering pa-

rameters controlling maximum stroke length can be reduced, causing the output

of the system to degenerate back toward daub based pointillist styles. Thus the

proposed salience-driven system is capable of rendering photographs in a wider

gamut of artistic styles than our previous salience-driven approach.

Our paintings are formed by compositing curved Catmull-Rom [14] spline brush strokes

via an adaptation of the multi-scale curved stroke painterly technique proposed by
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Hertzmann [71]. We build upon this work in two ways. First, we modify the tech-

nique to accommodate preferential rendering with regard to salience. Strokes are more

densely placed in salient regions, then ordered and modulated to prevent strokes from

non-salient areas encroaching upon more salient ones. Differential rendering styles are

also possible by varying stroke style according to the classification of salient artifacts,

for example edges or ridges. This context-dependent adaptation of stroke style is a

novel contribution to AR. Second, we use our novel relaxation scheme to iteratively

converge the rendering toward the “optimal” painting for a given image. We adapt

Hertzmann’s contour tracing algorithm to account for the influence of noise, present

in any real image. As a consequence, post-relaxation strokes tightly match the con-

tours of salient objects whilst non-salient high frequency detail (emphasised with other

painterly methods) is attenuated. We demonstrate the results of our painterly tech-

nique on a wide range of images, illustrating the benefits of rendering with regard to

salience and the improvements gained by subsequent relaxation of the painting using

our GA based technique.

4.2 Background in Evolutionary Computing

Evolutionary Algorithms (EAs) seek to model the evolutionary processes found in bi-

ology, such as natural selection or mutation, to search for an optimal solution to a

problem under a specific set of constraints. The early development of EAs dates back

to the sixties, when the research of such algorithms fell under the encompassing title of

“Evolutionary Computing”. However the independent development of similar ideas by

separate research groups ensured that, by the early eighties, EAs had diversified into

three subtly distinct categories [70]: Genetic Algorithms (GAs) [36, 56, 77], Evolution-

ary Programming (EP) [50] and Evolutionary Strategies (ES) [131].

GAs are generally considered to originate from the cellular automata work of Holland et

al [77]. The GA operates upon a population of individuals; each individual represents

a point in the problem space and is uniquely characterised by its associated genome

containing a “genetic code”; this code often takes the form of a binary string but this is

not strictly necessary. Each individual can be evaluated via a “fitness function” to yield

a scalar value corresponding to the optimality of the solution it represents. The GA

operates by breeding successive generations of these individuals. Selection of individ-

uals for breeding is via a stochastic process biased toward selecting fitter individuals;

so exhibiting a Darwinian “survival of the fittest” behaviour. The breeding process

itself involves the swapping of genetic code (genome fragments) between parents, to

produce a novel individual. This exchange of code is termed the “cross-over” process.

In addition, each element of the genome may be perturbed by some random amount
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— however the probability of large scale perturbation is slight. This process is termed

“mutation”. Self propagation (analogous to asexual reproduction) of a single parent

may also be permitted in some implementations. This survival of the fittest methodol-

ogy can evolve populations of individuals which tend to approach global maxima even

for complex problems exhibiting turbulent, high dimensional problem spaces. The GA

is a methodology, rather than an algorithm, and there are five principal issues that

must be resolved to successfully tailor the GA to a specific application:

1. How should a solution be represented by an individual’s genome?

2. What are the mechanics of the cross-over and mutation processes?

3. How should the initial population be generated?

4. How should fitness be defined?

5. What should the population size be? Should it vary or remain static?

We address these issues in situ, during the explanation of our GA based relaxation

process (Section 4.4.2).

The EP methodology is subtly different to that of the GA, in that no cross-over is per-

formed. Offspring for successive generations are copied from a single parent, selected

stochastically with a bias to fitness, and subjected to mutation; major mutations have

a much lower probability than minor mutations. The genome tends not to be explicitly

represented as a string, but as a point in the problem space. Mutation in many cases

takes the form of a translation in the problem space of stochastically chosen direction

and magnitude.

The ES methodology is very similar to that of EP, but again differs slightly. The

selection process in EP is often “tournament based”; a pair of parents are picked at

random to compete in a tournament — the outcome being decided by their fitness and

the winner being allocated a “win point”. Many individual tournaments take place

when producing a successive generation, and the highest aggregate scoring parents are

allowed to propagate. By contrast, with ES the weaker parents are deterministically

culled from the population prior to propagation.

4.2.1 Genetic Algorithms in Computer Graphics

EA based techniques have been successfully applied to a number of areas within Com-

puter Graphics. Early uses of EAs include Reynolds’ distributed behavioural mod-

els [129]. These simulated many individual automata interacting via simple rules, from
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which emerge more complex collective behaviours such as flocking and herding. A

realistic model of fish locomotion was presented by Tu and Terzopoulos [160], which

simulated perception, learning and, like Reynolds’ automata, also exhibited group be-

haviour. A well known application of GAs to Computer Graphics is in the virtual

creatures of Sims [141]. Each of Sims’ creatures is defined genetically, and generations

of creatures can evolve novel behavioural and graphical characteristics over time. Sims

posited that creatures which evolve via simulated genetic processes should be capable of

exhibiting more a complex and realistic biological evolutionary response than possible

through explicit, procedural modelling. GAs have also been applied to content based

image retrieval (CBIR) [2].

The majority of applications for GAs in the field of Computer Graphics address the

problem of goal directed animation. GAs have been successfully applied to animate

realistic flower growth [105], and also to develop stimulus response systems for human

articulated motion [115]. Tang and Wan [157] described a GA based system which

allows character motions to evolve in virtual environments, for example learning the

optimal way to perform a jump to reach a goal. Motion planning and character ani-

mation techniques were also driven by GAs in [126] and [179] respectively.

Our paint by relaxation technique is GA based. To justify this, consider Haeberli’s [62]

abstraction of a painting as an ordered list of strokes (comprising control points, thick-

ness, etc. with colour as a data dependent function of these); the space of possible

paintings for a given image is clearly very high dimensional, and our optimality crite-

rion makes this space extremely turbulent. Stochastic searches that model evolutionary

processes, such as genetic algorithms, are often cited as among the best search strategies

in situations of similar complexity [36]. This is due to the fact that GAs search from a

population of points, not a single point, and that the mutation and cross-over processes

integral to propagation cause jumps in the problem space which can mitigate against

the attraction of local minima; these cause difficulty to other strategies such as gradient

descent or simulated annealing. Furthermore, whilst it is difficult to explicitly model

the complex relationships between stroke parameters during the creation of a painting,

goal driven stochastic optimisers such as GAs are known to perform acceptably is the

absence of such models.
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4.3 Determining Image Salience

For the purposes of examination, please note that the primary investigator of the

salience measure described in this section was Peter Hall of the University of Bath,

with whom the author collaborated. Specifically, Hall developed the basic measure

which operates at a single scale (Sections 4.3.1– 4.3.3). The multi-scale extensions

to the measure were investigated and developed by the author (Section 4.3.4).

Our painterly process requires a method to automatically estimate the perceptual

salience of images. That is, produce a mapping from a colour image to a scalar field

in which the value of any point is directly proportional to the perceived salience of the

corresponding image point. We now describe an approach to estimating this mapping,

comprising three operators which respectively compute the rarity, visibility, and clas-

sification of local image artifacts. These three operators are computed independently

yielding three probabilities (Prare, Pvisible, Pclass). These are combined to estimate the

final probability of an image artifact being salient as:

Psalient = PrarePvisiblePclass (4.1)

Each of the three operators makes use of circular signals generated by sampling from

concentric rings centred upon the pixel whose salience is to be determined. The first

operator performs unsupervised global statistical analysis to evaluate the relative rarity

(Prare) of image artifacts. This process is similar to our original rarity based approach

of Section 3.2, and the motivation for this operator is principally to adapt that rarity

measure to be consistent with the circular sampling strategy. However the rarity based

measure is augmented with two further operators. Not all rare artifacts should be

considered salient; for example, normally invisible JPEG image compression artifacts

can sometimes be regarded as salient using rarity alone. A prerequisite for salient ar-

tifacts is therefore that they should also be visible, motivating a second perceptually

trained operator which estimates the visibility (Pvisible) of image artifacts. The mea-

sure is refined by asserting that certain classes of artifact, for example edges or corners,

may be more salient than others. This motivates use of a third operator, which users

train the system by highlighting artifacts in photographs they regard as salient. Sig-

nals corresponding to these artifacts are clustered to produce a classifier which may be

applied to artifacts in novel images in order to estimate their potential salience (Pclass).

This definition allows for a more subjective measure of salience, and holds further ad-

vantages in that classes of salient features may be trained and classified independently.

This allows stroke parameters to vary not only as a function of salience magnitude, but
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also allows differentiation of rendering style according to the classification of salient

regions (see Figure 4-8).

4.3.1 Determining Pixel Rarity

The first operator is an unsupervised technique for determining pixel rarity. The tech-

nique is very similar to that of Section 3.2 in that a model is constructed which encodes

the statistical distribution of a set of measures locally associated with each pixel, and

the outliers of this distribution are isolated.

For a given pixel p = (i, j)T the operator examines a series of rings of radius ρ, each

centred at (i, j)T . The image is uniformly sampled around each ring’s circumference

at angular positions θ, hence obtaining a discrete signal x(p) = (ρ, θ) ∈ <3; colours are

in RGB space. This signal is rewritten as a column vector. We have found a sampling

rate of 16, and values of ρ ranging from 1 to 3 pixels in increments of 0.5, to yield

good results in subsequent processing. As before, an eigenmodel is created from the

collection of vectors x(.) resulting from each pixel within the image. The Mahalanobis

distance d(.) is then computed for all pixels P in the image.

d2(x(.)) = (x(.)− µ)TUΛUT (x(.)− µ) (4.2)

The probability of an individual pixel q ∈ P being rare is then written as a quotient

measuring the fraction of the sample density which is less rare than the pixel q:

Q = {r : d(x(r)) ≤ d(x(q)) ∧ r, q ∈ P} (4.3)

Prare(q) =

∑

p∈Q d(x(p))
∑

∀p∈P d(x(p))
(4.4)

4.3.2 Determining Visibility

The second operator estimates the probability that a local image window contains a

perceptually visible signal. The just noticeable difference (JND) between colours in

RGB format is empirically measured. It is assumed that for each RGB colour r there

is distance τ(r), also in RGB space. Together the colour and the distance specify a

sphere of RGB colours (r, τ(r)). No colour interior to the surface of the sphere can

be perceptually discriminated from the centre colour, whilst all exterior colours can be

so discriminated. The distance τ(r) is one JND at the colour r. The sphere radius

can vary depending on experimental conditions, and after several experimental trials

τ emerges as the mean radius accompanied by an associated standard deviation σ.

Although this is a simple colour model (an ellipsoid might better model JND surfaces)

it has been found to perform satisfactorily, and the reader is referred to [66] for dis-
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cussion and experimental details. Similar distance metrics are also described in [175]

for luminance. The advantage of the this approach and [175], over other perceptually

based colour spaces (such as CIELAB), is that unit distances in JND space correspond

to colour distances that are only just discernible by the user.

To evaluate the visibility of artifacts local to a point p = (i, j)T , the image is sampled in

a manner identical to Section 4.3.1 to obtain a signal (ρ, θ), the differential magnitude

of which may be written as:

d(ρ, θ; p) =
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where c(ρ, θ; p) returns the RGB value of the image at coordinates (ρ, θ) relative to p.

This is, however, not a perceptual distance and the probability φ(.) that this change is

visible is computed as:

φ(ρ, θ) = erf ((d(ρ, θ)− τ)/σ) (4.6)

where τ and σ are the JND and its deviation for the colour sample at c(ρ, θ) in the

local window. The reasoning is that if a signal is visible in any ring, then it is visible

for the whole ring but not for the whole disc, and so write:

Pvisible =

ρmax
∑

ρ=1

max(φ(ρ, θ)) (4.7)

as the probability of the disc being visible. This definition ensures that if a signal

grazes the edge of the disc it will register as visible, but not strongly because it will

not pass through every ring. If, on the other hand, a signal pases through the centre

of the disc then it passes through every ring, and a high visibility is obtained.

4.3.3 Classification of Image Artifacts

The final operator introduces a degree of subjectivity by allowing users to train the

system to identify certain classes of low-level artifact as potentially salient.

For a given pixel p, the image is sampled in an identical manner to that used for de-

termining pixel rarity. However, each ring is treated separately, and so considers the

classification of the colour signal c(θ) at constant ρ (this transpires to be more stable

than considering the disc as a whole). A feature vector is formed by first differentiating

c(θ), using Euclidean distance in RGB space, to obtain a periodic scalar signal y(θ)

(Figure 4-2).
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Figure 4-2 Circular descriptors (top left) are used to create signals (top right) from points
specified as salient by the user, which are then processed and clustered in a high dimensional
space. Features such as ridges, edges and corners (second row) create distinctive spectral
signals (third row), which may be used to determine not only the salience of a point, but
also its classification type. Bottom row: a photograph and its corresponding salience map
with edges in red, ridges in green and corners in blue.

The absolute value of the Fourier components |F [y(θ)]| are computed, normalised to

unit power, and the d.c. (zeroth) component dropped. Thus for a given y(θ) a feature

is computed as follows:

f(ω) =
|F [y(θ)]|

(
∑

θ |y(θ)|2
) 1

2

(4.8)

f(ω) ← f(ω) \ f(0) (4.9)

by appeal to Parseval’s theorem to compute power. Removing the d.c. component is

equivalent to subtracting the mean, which makes this feature vector invariant to linear

colour shifts. It is also invariant to orientation. Thus c(θ), c(θ)+α, c(θ+β) all map to

the same point in feature space. The system has proven to be robust to more general
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colour scalings, γc(θ), but cannot be invariant (suppose γ = 0).

It is these properties that principally motivated choice of circular sampling (after Smith

and Brady who advocated the use of circular sampling [144] in their SUSAN system),

since the classification of salient artifacts (for example, edges) should be invariant with

respect to a cyclic shift of the signal. This contrasts with features based on standard

derivative forms, in which edge signals, say, are thinly distributed across feature space

(forming a closed one-dimensional manifold).

Training and Classification

Training is a supervised process that occurs over several images, and requires the user

to interactively highlight artifacts they regard as salient during a pre-processing step.

Moreover, the user may choose a number of classes of artifacts (such as edge, ridge, or

corner), and identify a class label with each artifact they highlight. Training therefore

results in multiple sets of artifacts, each set containing artifacts of identical class.

To build the classifier each artifact in a given set, k say, is converted into a feature

vector as previously described. An estimate of the class conditional density p(f |k) for

that set of features is then obtained using a Gaussian Mixture Model (GMM), fitted

using Expectation Maximisation [41]. A prior, p(k), is also estimated as the expected

number of points — the ratio of the number elements in the given set to the number

of points in all sets. This enables computation of the posterior likelihood p(k|f) by

appeal to Bayes theorem:

p(k|y) =
p(y|k)p(y)

∑N
j=1 p(y|j)p(j)

(4.10)

During painting, classification of a pixel begins by sampling to obtain a new artifact.

This is converted to a feature vector and the above probability vector is computed (one

element per class). The L1 norm of this vector is unity, and in fact we can simply add

elements to estimate the probability that an artifact belongs to a subset of classes. For

each classified pixel we therefore have a probability p(k|y) of membership to each of

the trained classes, and compute Pclass as the maximum value over all p(k|y). Later,

this classification allows us to vary the stroke rendering style according to the class of

salient artifact encountered — see Figure 4-8.

4.3.4 Selection of Scale for Classification

The above approach classifies artifacts at a constant ρ, and so at constant scale. How-

ever classification can vary over scale. For example, an artifact classified as an edge at
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Figure 4-3 Top: Classifier output using a single scale ρ = 3 (left) and multiple scales
(right). Note that ridges and edges around the tiles are more clearly discriminated using the
multi-scale technique. Middle: Further multi-scale classified output on real and synthetic
source images. Bottom: Source images.

small scales might be classified a ridge at larger scales; in such cases one would arguably

prefer the final classification to be “ridge”. By contrast corners remain relatively sta-

ble over scale variation, and it transpires that a range of heuristics exist for other such

combinations. To opt for the most stable classification over scale is therefore insuffi-

cient, but to hard code heuristics specific to edges, ridges etc. is also a poor solution

since these are but examples of more general features that users may identify as salient.

Our strategy is to perform the classification of a given point at several values of ρ; again

using the range 1 to 3 pixels at increments of 0.5. At each scale we obtain a posterior

probability vector p(k|y), and concatenate these to form a column vector (in effect, a

point in a higher-dimensional space that now encapsulates scale information). Since we

know the user supervised classification of each point we may again perform clustering
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Figure 4-4 Applying the salience measure to an image from test set β, from left to right:
original image, Sobel filtered image, multi-scale salience map (red lines indicate salient
edges), and a manually specified ground truth of salient edges. The salience measure
allows us to discriminate between salient edges, and the ridges and non-salient artifacts
that comprise the remainder of the image. Such distinction is not possible using local
measures. We later present a painterly rendering of this image in Figure 4-13, in which
salient edges (for example the face) are emphasised, and other details (such as the rock
texture) are abstracted away.

of salient feature classes, this time by fitting GMMs in this scale-dependent space. The

advantage of our approach is that the aforementioned “heuristics” for classification are

now implicitly learnt by example.

The extension of the feature classifier to operate at multiple scales impacts both a)

the ability to determine salience magnitude, and b) the ability to classify the salient

artifacts encountered — both are relevant to our painting process. We performed two

experiments to measure each of these impacts respectively.

Experiment 1: Salience magnitude

We trained both the single-scale and multi-scale versions of the salience measure using

the image set α (see Figure 4-5). The classes of feature trained on were edges, ridges

and corners. In the case of the single-scale measure, we used a disc radius value of ρ = 3

for both the training and classification processes; this value has been found to work

well over many images (see [66]). Once trained, we applied both measures to a further

image set β (distinct from α), to determine salience magnitude within those images

(Psalient, see equation 4.1). We also manually obtained a ground truth salience map

for each image in β manually, from a human participant instructed to draw over the

important features in the image. The ground truth, and the training, were supplied

by the same participant in our experiment (a sample ground truth map is given in

Figure 4-4). We compared the output of the salience measures with the ground truth

salience map, to determine the performance of each salience measure.
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The upper left graph of Figure 4-5 summarises the results of this experiment. The

graph shows the ROC curve for the detection of salient pixels, where Psalient ≥ 0.5

(that is, where pixels are more likely to be salient than not). The curve plots sensitiv-

ity (true positive rate; the fraction of ground truth salient points classified as salient by

the measure), versus specificity (one minus the false positive rate; the fraction of ground

truth non-salient points classified as salient). These measures were averaged over the

ten image test set (β). A range of radial sampling rates were tested {6, 8, 16, 24, 32} for

both the single and multi-scale versions of the salience measure. The performances of

both measures over the range of sampling rates were plotted with accompanying trend

lines.

Both measures perform well at sampling rates of around 16, providing a good com-

promise between true positives and false positives, and motivating the choice of 16

sampling intervals in our painting process. Both the true positive and false positive

rates fall as sampling rate increase beyond the neighbourhood of 16; in general fewer

points are identified as salient at these rates. Although the internal representation

of the circular signal is superior at higher sampling rates, it is likely that the higher

dimensionality of the space in which these signals are distributed inhibits clustering

(since both true and false positive signals decline uniformly). Note that although the

rate of true positives (pixels correctly identified as salient) does not increase greatly us-

ing the multi-scale approach, the false positive rate declines significantly, so improving

performance.

Experiment 2: Accuracy of Classification

Our second experiment tested for any specific improvements in classifier accuracy due

to the multi-scale extensions. The experiment applied the same single and multi-scale

measures, trained over image set α, to the test image set β. However, the ground truth

in this experiment was a manually specified map in which corners, edges and ridges had

been manually identified (in a similar manner to the classifier training process itself).

As with experiment 1, the same person trained the classifier as provided the ground

truth data.

Figure 4-5 contains the results of this experiment. The upper right graph shows an

ROC curve, which compares the true and false classification rates (with respect to the

manually specified ground truth). This graph was generated by forming a “confusion

matrix” for each test image. Examples of a confusion matrices for a real image (the

kitchen image, Figure 4-3, bottom-left), and a synthetic image (the Mondrian image,

Figure 4-3, bottom-right), and also given in Figure 4-5. The values in the confusion

matrix represent the proportion of ground truth artifacts (specified by the horizontal,
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Figure 4-5 Comparison of salience measure performance under varying circular sampling
rates, using single-scale vs. multi-scale classification (results discussed in Section 4.3.4).
Top: Two ROC graphs of the single-scale (blue) and multi-scale (red) measures, showing
performance over various sampling rates (labelled). Top-left: True and false positives wrt.
detection of salient points. Top-right: True and false classifications rates of identified
salient feature points. Bottom left: Confusion matrices when classifying a sample real and
synthetic image, with and without multiple scale classification (c, e and r represent rates
for corners, edges and ridges respectively. Subscript t indicates ground truth classifications,
while subscript d indicates detected classification). Bottom right: The distinct training
(α) and test (β) image sets.

subscript “t”) deemed to be of a certain classification (specified by the vertical, sub-

script “d”). Note that columns in the matrix need not sum to unity, since it is possible

that a true corner, for example, may not be picked out as salient by the measure (a false

negative). Likewise, the rows need not sum to unity since salient artifacts identified by

the measure need not have been specified as such in the ground truth (a false positive).
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The diagonal of the matrix may be averaged to give the true classification rate for an

image. The remainder of the matrix may be averaged to obtain the false classification

rate. The values used for the ROC curve correspond to these true and false classifi-

cation rates, averaged over the entire test image set (β). On average, the multi-scale

approach to classification demonstrates superior performance than the single scale ap-

proach (exhibiting higher true positive, and lower false negative rates for classification).

Compare the confusion matrices for the single and multiple scale approaches. Perfor-

mance for both the real and synthetic images is improved in both cases using the multi-

scale approach. This may be visually verified by comparing the classification results of

the real (kitchen) scene in Figure 4-3 with (upper-right) and without (upper-left) the

use of multi-scale information; ridges and edges are discriminated more clearly in the

former case. Indeed, the confusion matrices show the greatest performance increase

is in the discrimination of these two feature classes — confirming our suggestion that

scale is of great importance when deciding between a classification of “edge” or “ridge”.

The performance increase on the synthetic (Mondrian) image is less pronounced than

that of the real scene. We suggest that this is possibly due to the training of the

classifier on image set α, which consists entirely of real world images; the frequency

characteristics of a synthetic scene may exhibit differences which impede the classi-

fication process, although acceptable classifications are produced by the system (see

Figure 4-3, middle-right).

4.4 Generating the Painting

We now describe our algorithm for generating a painting from a 2D image. We begin

by computing a salience map for the source image using the technique of Section 4.3.

An intensity gradient image is also computed via convolution with directional Gaussian

derivatives, from which a gradient direction field is obtained by taking arc tangents.

In areas of low gradient magnitude the directional field can be unreliable, and so is

interpolated smoothly from neighbouring pixels using a distance transform. The source

image, direction field and salience map are used in subsequent stages of the painting

algorithm. We first describe how individual strokes are placed to create a painting,

and then describe the relaxation stage which results in the generation of an “optimal”

painting.

4.4.1 Stroke placement algorithm

Our paintings are formed by compositing curved spline strokes on a virtual canvas.

We choose piecewise Catmull-Rom splines for ease of control since, unlike β-splines

(used in [58, 71]), control points are interpolated. We begin by placing seed points
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on the canvas, from which strokes are subsequently grown bidirectionally. Seeds are

placed stochastically, with a bias toward placement of seeds in more salient regions.

As a heuristic we make provision for a stroke to be seeded at every other pixel; the

salience map then governs the distribution of these strokes over the image. In practice

we scatter 95 percent of the n strokes in this manner, the remaining 5 percent are

scattered uniformly; this prevents holes appearing in areas of relatively low salience

(Figure 4-6, right).

Bidirectional Stroke Growth

Strokes are grown to extend bidirectionally from seed points. Each end grows indepen-

dently until it is halted by one or more preset criteria. Growth proceeds in a manner

similar to Hertzmann’s algorithm [71] in that we hop between pixels in the direction

tangential to their intensity gradient. A history of visited pixels is recorded, and used

to form the control points for the spline stroke.

We observe that noise forms a component of any real image, and any locally sampled

direction estimate is better regarded as being sampled from a stochastic distribution

(Figure 4-6, left). We assume that noise obeys the central limit theorem, and so model

this distribution as a zero centred Gaussian, G(0, σ); we determine σ empirically (see

next subsection). Given a locally obtained gradient direction estimate θ we select a hop

direction by adding Gaussian noise G(0, σ). The magnitude of the hop is also Gaussian

distributed, on this occasion G(µ′, σ′), both µ′ and σ′ being inversely proportional to

the local value of the precomputed salience map. Provided that a preset minimum

number of hops have been executed, the growth of a stroke end is halted when either

the curvature between adjacent pixels, or the distance (in JND space) between the

0 θ

σ

)G( σ=θ( ) 0,p

θ = stochastic deviation (3   )σ

Sampled hop site 
(stroke control point)

θ

θ

θ

θ

θ
θ

θ

Measured contour
(stroke trajectory)

Physical contour

Stroke seed point

θ

Figure 4-6 Left: Illustrating the stochastic growth of strokes from a seed pixel. We
choose strokes with hop sites which minimise our objective function, under the constraint
that hop angles are drawn from the distribution p(θ) = G(0, σ). Right: The salience-biased
stochastic distribution of strokes, corresponding to the painting of Figure 4-13.
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Figure 4-7 The system estimates the standard deviation of image noise by accepting
a “ground truth” from the user. The user selects a region of the image within which
they deem paint strokes should be orientated in a uniform direction (left). The gradient
direction of pixels within this region is then measured (blue). We have observed that such
image noise tends to obey the central limit theorem, and so is well modelled by a Gaussian
(above, the mean direction is approximately 88◦, standard deviation σ ≈ 5◦.

colour of the pixel to be appended and the mean colour of visited pixels, exceeds a

threshold (preset at 3 JNDs).

This method initially yields a sub-optimal trajectory for the stroke with respect to our

measure, described in Section 4.1. For a “loose and sketchy” painting this is often

desirable (see Figure 4-8), but for painting styles exhibiting tighter stroke placement,

trajectories must be closer to the optimal. The degrees of freedom resulting from each

of the many stochastic hops combine to create a range of stroke loci, at least one

of which will result in the maximal conservation of salient detail. The combination of

these optimally positioned strokes comprises the optimal painting, and it is by means of

breeding the fittest paintings to create successively superior renderings, that we search

for such a painting via GA relaxation in Section 4.4.2. Our relaxation strategy is thus

able to approach more globally optimal stroke trajectories, and these can out-perform

trajectories based purely on local estimates of direction.

Calibration for image noise

The choice of σ significantly influences the stroke growth and relaxation process. A

value of zero forces degeneration to a loose and sketchy painterly system, whilst a high

value will lengthen the relaxation process unnecessarily and also may introduce unnec-

essary local minima. We propose a one time user calibration process to select this σ,

typically performed during the training step of the perceptual salience measure.

The user is asked to draw around sample image regions where direction of image gra-

dient is perceived to be equal; i.e. along which they would paint strokes of similar
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orientation. This results in multiple samples of the gradient components, from which

we compute gradient direction by taking arc-tangents. We have observed the natural

distribution of these values to be Gaussian, confirming our assumption that such im-

age noise obeys the central limit theorem (Figure 4-7). We therefore take the mean

angle µ(.) as the common tangential angle. Similarly, we compute the unbiased stan-

dard deviation of the set of measured tangential angles which subsequently becomes

the σ parameter for bidirectional stroke growth. We assume σ to be equal for all angles.

We typically obtain very similar σ values for similar imaging devices, which allows us

to perform this calibration very infrequently. A typical σ ranges from around 2 to 5

degrees, with the larger deviations being attributed to digital camera devices (possibly

as artifacts of lower CCD quality or JPEG compression). This variation allows between

twelve and thirty degrees of variation per hop for noisy images which, given the number

of hops per stroke, is a wide range of loci for a single stroke. Such observations add

credence to our argument for the need of a relaxation process taking into account

image noise; potentially large variations in stroke placement due to uncompensated

image noise are likely to produce inaccurate stroke placements in single-pass (i.e. single

iteration) painterly rendering systems [58, 71, 103, 140].

Rendering and Differential Styles

Stroke rendering attributes are set automatically as a function of stroke salience, taken

as the mean value of the salience map under each control point. By default, stroke

thickness is set inversely proportional to salience. Stroke colour is uniform and set

according to the mean of all pixels encompassed in the footprint of the thick paint

stroke. During rendering, strokes of least salience are laid down first, with more salient

strokes being painted later. As with our previous algorithm (Section 3.3) this prevents

strokes from non-salient regions encroaching upon salient areas of the painting.

The ability of our salience measure to differentiate between classes of salient feature

also enables us to paint in context dependent styles. For example, we have described

how we may discriminate between artifacts such as edges and ridges (Section 4.3.3).

In Figure 4-8 we give an example of a painting generated by our system, in which the

classification probability of a feature is used as a parameter to interpolate between

three rendering styles (parameter presets) flat, edge and ridge. For the flat preset,

rendering takes the default form described in the previous paragraph. For edges and

ridges, the luminance of strokes is heavily weighted to create dark, outline strokes. In

the case of edges, thickness of strokes is also boosted to create thick outlines — while

with ridges the thickness is greatly reduced to produce thin wispy strokes. The σ value

for ridges is also boosted to reduce accuracy and produce “sketchy” strokes. Since these
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Figure 4-8 Top: a still-life composition and corresponding salience map. Bottom: the
above rendered as a loose and sketchy painting, exhibiting differential stroke rendering
styles determined by local feature classification. Edges are drawn with hard, precise thick
strokes; ridges with a multitude of light, inaccurate strokes. Rendered prior to the relax-
ation step of Section 4.4.2.

preset rendering parameters (thickness, luminance decay, etc.) all vary by continuous

multiplicative factors, interpolation between the presets according to the classification

probability vector is straightforward. This process also adds semantic to the rendering,

in that we render ridges as single strokes, rather than as two separate edge strokes.

To the best of our knowledge the rendering of paintings in differential styles via an

automated heuristic is a novel contribution to AR.

4.4.2 Relaxation by Genetic Algorithm

Genetic algorithms simulate the process of natural selection by breeding successive

generations of individuals through the processes of cross-over, fitness-proportionate re-

production and mutation. In our algorithm such individuals are paintings; ordered lists

of strokes and their associated attributes. Recall that we define the fitness of a given

painting as proportional to the correlation between the salience map of the original

image and level of (high frequency) detail within the corresponding painting.
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Fitness and Selection

We begin by seeding an initial generation of paintings using the approach described in

Section 4.4.1 and then enter the iterative phase of the genetic algorithm (Figure 4-11).

First we perform evaluation; the entire population is rendered, and edge maps of each

painting produced using by convolution with Gaussian derivatives, which serve as a

quantitative measure of local, high frequency detail. The scale of the Gaussian is care-

fully chosen so as to smooth the fine inter-stroke edges, and prevent these influencing

this detail measure in the painting. The generated edge maps are then compared to

the precomputed salience map of the source image. The mean squared error (MSE)

between maps is used as the basis for fitness measure F (.) for a particular painting;

the lower the MSE, the better the painting:

F (I, ψ) = 1− 1

N

∑

|S(I)− E(Ψ(I, ψ))|2 (4.11)

The summation is over all N pixels in source image I. Ψ(.) denotes our painterly pro-

cess, which produces a rendering from I and an ordered list of strokes ψ (ψ corresponds

to an individual in the population). Function S(.) signifies the salience mapping pro-

cess of Section 4.3, and E(.) the process of convolution with Gaussian derivatives to

produce an edge map. In this manner, individuals in the population are ranked ac-

cording to fitness. The bottom ten percent are culled, and the top ten percent pass to

the next generation. The latter heuristic promotes convergence; the fittest individual

in successive generations must be at least as fit as those in the past. The top ninety

percent are used to produce the remainder of the next generation through simulated

natural selection. Two individuals are selected stochastically with a bias to fitness,

and bred via cross-over to produce a novel offspring for the successive generation. This

process repeats until the population count of the new generation equals that of the

current.

Cross-over

We now describe the cross-over process in detail (Figure 4-9, below). Two difference

images, A and B, are produced by subtracting the edge maps of both parents from the

salience map of the original image, then taking the absolute value of the result. By

computing the binary image A > B, and likewise B > A, we are able to determine

which pixels in one parent contribute toward the fitness criterion to a greater degree

than those in the other. Since the atoms of our painterly renderings are thick brush

strokes rather than single pixels, we perform several binary dilations to both images to

mark small regions local to these “fitter” pixels as desirable. A binary AND operation

between the dilated images yields mutually preferred regions. We mask these conflicting

regions with a coarse chequerboard texture (of random scale and phase offset) to decide
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Figure 4-9 Genetic operators: the mutation and cross-over operators used during the
relaxation process.

between parents in an arbitrary fashion. Finally, strokes seeded within the set regions

in each parent’s mask are cloned to create a new offspring.

Mutation

Finally, when a bred individual passes to a successive generation it is subjected to a

random mutation. A new “spare” painting is synthesised (though never rendered), and

a binary mask produced containing several small discs scattered within it. The number,

location and radius of the discs are governed by random variates. Strokes seeded within

set regions of the binary mask are substituted for those in the spare painting; the spare

painting is then discarded. In our implementation large areas of mutation are relatively

rare, averaging around four hundredths of the image area per painting.

Termination

The relaxation process runs until the improvements gained over the previous few gen-

erations are deemed marginal (the change in both average and maximum population

fitness over sliding time window fall below a threshold ∆), at which point the search

has settled into a minima (see Figure 4-20) of sufficient extent in the problem space

that escape is unlikely (Figure 4-10, right). The fittest individual in the current pop-
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ulation is then rendered and output to the user. Typically executions run for around

one to two hundred iterations for values of σ between two and five degrees, which we

found to be a typical range of standard deviations for image noise (see Section 4.4.1).

Forcing larger values of σ can result in convergence but, we observe, at the cost of an

exponential increase in execution time (Figure 4-10, left).

Parallel Implementation

In practice, evaluation is the most lengthly part of the process and the rendering step is

farmed out to several machines concurrently. In our implementation we distribute and

receive paintings via the Sun RPC interface, using XDR to communicate over a small

heterogeneous (Pentium/UltraSPARC) compute cluster running on our local network.

Each painting in the population represents one “job” of work. Execution is blocked

until the entire population of paintings are rendered, that is, all jobs are complete. In

order to maintain acceptable execution speeds it is therefore important to assign jobs

to machines in an efficient manner.

The time between sending a job to a helper (slave) machine, and the return of re-

sults from that machine is recorded. A mean execution time is thus maintained and

updated for each machine throughout the rendering of a population. In our original

implementation, jobs were simply farmed out to the first available machine. However

in a heterogeneous system, machines may be of varying speeds and capabilities, and a

single relatively slow machines can severely impact the performance of the whole
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Figure 4-10 Illustrating GA termination. Left: Increasing the value of σ allows processing
of noisier image at the cost of an exponentially increasing execution time. Right: the MSE
(inverse fitness) averaged over the entire population. Automatic algorithm termination
was suppressed, and the GA forced to run for 1000 iterations (data has been sub-sampled
for presentation). This is representative of relaxation process’ behaviour, and there is little
advantage in exploring additional local problem space after the termination point.
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cluster.
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Figure 4-12 Illustrating the scheduling algorithm governing the distributed rendering of
a 20 painting generation. Left: The simplistic “first free machine” scheduling strategy
becomes time inefficient toward the last few jobs in the population. Right: Sending jobs
to machines that we predict will complete them soonest maintains time efficiency over the
entire population.

cluster using this strategy (Figure 4-12). Instead, our strategy is to predict which of

the machines is likely to finish the pending job first, and then queue the job on that

machine. This may involve queueing a job on a faster, busy machine, when a slower

machine is idle. Note that for the first iteration of rendering we will not hold an

estimate for the speed of machines, and so on this iteration all are assumed to render

at equivalent speed.

The typical time to render a fifty painting generation at high (1024 × 768) resolution

is approximately five minutes over six workstations. Relaxation of the painting can

therefore take in the order of hours, but significant improvements in stroke placement

can be achieved, as can been seen in Figure 4-16 and the accompanying video. The

overhead of our task scheduler is low, and processing time falls approximately linearly

as further machines of similar specification are added to the cluster.

4.5 Rendering and Results

We have generated a number of paintings to demonstrate application of our algorithm

using the source photographs of Figure 4-17. The reader is also referred back to the

dragon (Figure 4-1) and sketchy still-life (Figure 4-8) paintings, presented in situ. As

a note, we have found that running the paintings through a standard sharpening fil-

ter [145] can assist presentation of our paintings on the printed page, and have applied

such a filter to all paintings presented in this chapter.

The painting of the model in Figure 4-13a converged after 92 generations. Thin pre-

cise strokes have been painted along salient edges, while ridges and flats have been

painted with coarser strokes. Observe that non-salient high-frequency texture on the

rock has been abstracted away, yet tight precise strokes have been used to emphasise
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A B

C

D

Figure 4-13 Man on rock: (a) final painting after convergence using our proposed method,
close-up of hands in (c). (b) example of the face rendered with insufficient emphasis
(d) example of rock texture rendered with too great an emphasis. Refer to the text of
Section 4.5 for full explanation of (b) and (d), and how our salience adaptive painting
avoids such difficulties.

salient contours of the face. In the original image the high frequency detail in both

regions is of similar scale and edge magnitude; existing painterly techniques would,

by contrast, assign both regions equal emphasis. With current techniques, one might

globally increase the kernel scale of a low-pass filter [71] or raise thresholds on Sobel

edge magnitude [103] to reduce emphasis on the rock (Figure 4-13c). However this

would cause a similar drop in the level of detail on the face (Figure 4-13b). Conversely,

by admitting detail on the face one would unduly emphasise the rock (Figure 4-13d).

In our method, we automatically differentiate between such regions using a perceptual
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B

A

Figure 4-14 Pickup truck after convergence. Observe salience adaptive emphasis of sign
against background in (a). We have manually dampened the salience map in (b) to cause
greater abstraction of detail; compare stroke placement here with the remainder of the car
body. Original photo courtesy Adam Batenin.
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Figure 4-15 Sunflowers after convergence. Inset: a sketchy version of the sunflowers in
the style of Figure 4-8, prior to relaxation.
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1st

30th

70th

Figure 4-16 Relaxation by genetic algorithm. Detail in the salient region of the “dragon”
painting sampled from the fittest individual in the 1st, 30th and 70th generation of the
relaxation process. Strokes converge to tightly match contours in salient regions of the
image thus conserving salient detail (an animation of this convergence has been included
with the electronic supplementary material in Appendix C).
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Figure 4-17 Source images used to generate the paintings of Figures 4-13, 4-14, and 4-15.

Figure 4-18 Left: The distinction between salient and non-salient detail can not be made
by current image-space painterly techniques which use locally measures such as variance
or the Sobel operator (rendered using [103]). All high frequency detail is afforded equal
emphasis. Right: “Sheaf-binder” [Van Gogh, 1889]. The majority of Van Gogh’s work
is characterised by his use of elegant, curved sweeping strokes; our system is capable of
producing strokes in ostensibly similar styles (Figure 4-15).
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Figure 4-19 Detail from Figure 4-14, region A. Left: Section of the original photograph
exhibiting non-salient background texture (shrubbery) and salient foreground (sign-post).
Middle: All fine detail is emphasised using existing automatic approaches (here we use [103]
as a representative example), which place strokes using only spatially local information.
In this image, the high frequency detail of the background leaf texture has caused strokes
to be clipped at edges, tending the process back toward photorealism. However attempts
to mitigate this effect, by reducing the edge threshold for clipping, will further degrade
salient detail on the sign. Right: Using our adaptive approach, salient detail is conserved,
and non-salient detail is abstracted away.

salience map (Figure 4-4) — contrast this with the Sobel edge field in the same figure,

in which no distinction between the aforementioned regions can be made.

We present a still-life in Figure 4-15 which achieved convergence after 110 generations.

Inset within this figure we present a similar painting prior to relaxation, demonstrating

differential rendering style as strokes with a high probability of being edges are dark-

ened to give the effect of a holding line. Further examples of level of detail adaptation

to salience are given in Figure 4-14. In region A, observe that the salient ’phone sign

is emphasised whilst non-salient texture of the background shrubbery is not (also see

Figure 4-19 for a enlarged, comparative example). For the purposes of demonstration

we have manually altered a portion of salience map in region B, causing all detail to

be regarded as non-salient. Contrast stroke placement within this region with that on

the remainder of the car body. Variations in style may be achieved by altering the

constants of proportionality, and also thresholds on curvature and colour during stroke

placement. Paintings may be afforded a more loose and sketchy feel by increasing the

halting threshold ∆ and so decreasing the number of relaxation iterations; essentially

trading stroke placement precision for execution time. A similar trade-off could be

achieved by manually decreasing the σ parameter (Figure 4-10, left).

All of our experiments have used populations of fifty paintings per generation. We

initially speculated that population level should be set in order of hundreds to create

the diversity needed to relax the painting. However it transpires that although con-
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Figure 4-20 Three representative runs of the relaxation process; blue corresponds to the
model (Figure 4-13), red the dragon (Figure 4-1) and green the abbey (Figure 4-21). The
left-hand graph shows the MSE (inverse fitness) of the fittest individual over time, the
right-hand graph shows the same measure averaged over each generation.

vergence still occurs with such population limits, it requires, on average, two to three

times as many iterations to achieve. Such interactions are often observed in complex

optimisation problems employing genetic algorithms [56]. We conclude that the diver-

sity introduced by our mutation operator (Section 4.4.2) is sufficient to warrant the

lower population limit.

During development we experimented with a number of alternative GA propagation

strategies. Originally we did not carry the best individuals from the previous gener-

ation directly through to the next. Instead, the search was allowed to diverge, and

a record of the “best painting so far” was maintained separately. This resulted in a

more lengthly relaxation process, which sometimes produced marginally fitter paintings

than the current method. However the marginal aesthetic benefit that resulted did not

seem to warrant the large increase in run-time. Similar results were observed using an-

other early strategy; if, after a number of generations, we observe no change in fitness,

then we may have reached a plateau in the problem space. In such circumstances the

probability of large scale mutation occurring was gradually increased until the search

escaped the plateau. Again, this caused lengthly execution times for which the pay off

in terms of quantitative change in the fitness function, and qualitative improvement in

aesthetics, was marginal.

4.6 Summary and Discussion

In this chapter we have presented a novel automatic algorithm for creating impasto

style painterly renderings from photographs. This work builds upon the pilot single-

pass salience adaptive painterly technique introduced in the previous chapter, which
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aimed to control emphasis in a painting through use of a global salience map. The

principal disadvantage of single-pass algorithms is that strokes are placed only once

and then remain fixed; image noise local to stroke location can produce inaccuracies in

the rendering. By contrast, relaxation based painting techniques can iteratively tweak

stroke parameters to converge the painting toward some procedurally defined “goal”

state. Such an approach is of considerable benefit, since in the absence of a specific

procedural model of the painting process, we can still approach a specific goal; in effect,

we can specify where we want to be, and provide only vague instructions on how to get

there.

We drew upon our observations of artistic practice in Chapter 3 to define the degree

of optimality for a painting to be measured by the correlation between the salience

map of the original image and level of detail within the corresponding painting. To

search for this optimal painting, we developed a novel GA based relaxation technique.

Our choice of GAs for relaxation was motivated by their superiority to other search

techniques for high dimensional problem spaces with many local optima. Furthermore,

although it is difficult to explicitly model the complex relationships between stroke

parameters during creation of a painting, goal driven stochastic processes such as GAs

are known to perform acceptably well without such models. The inherent parallelism

of the population evaluation step also permits acceptable performance when combined

with distributed computation techniques (Section 4.4.2).

The paintings generated by our algorithm serve to reinforce our argument that a higher

level of spatial analysis is of benefit to AR, in terms of enhancing quality of output. The

GA relaxation framework and salience measure serve as a more sophisticated means

to the same end; that of generating paintings with a focus and emphasis driven by

global image importance rather than simple local frequency content. For example, the

salience adaptive discrimination between level of detail on the rock, and the model’s

face (see Figure 4-13), or the sign-pose and shrubbery (see Figure 4-19), would not

have been possible using local, frequency driven approaches to AR.

We are not the first to describe relaxation approaches to painterly rendering. As we

observe in the review of Section 2.4.1, the discussion of such approaches dates back

to Haeberli [62], and the first algorithmic solutions was described in [155]. However

the relaxation techniques that exist contain objective functions that specifically aim to

maximise the preservation of high frequency detail in the final painting. We discussed

the disadvantages of this spatially local approach to rendering in Chapter 3.

Our algorithm operates by compositing curved spline brush strokes, which are fitted
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Figure 4-21 Bath Abbey after 110 generations of the relaxation process. The darker
strokes outlining the arch and other salient edges are generated by interpolating between a
default and “edge” preset according to the probability of salient artifacts being edges (see
Section 4.4.1). Original photograph inset, top-left.

by sampling local gradient orientation. We argued that orientation measurements are

better modelled as points sampled from a Gaussian distribution, due to the presence

of noise (a component of any real image). Our algorithm is provided with a calibrated

estimate of the level of noise in the image, and so can produce a stochastic distribution

of potential values for measurements, such as orientation, taken from the image. Our

relaxation based approach varies stroke parameters within this distribution to converge

toward our optimality criterion. This explicit modelling of image noise is a novel

contribution to AR. Furthermore, the estimate of noise (σ) need only be approximate

and should be greater than or equal to the true level of noise in the image. The

penalty for over-estimating noise is an unnecessarily long execution time (Figure 4-10,

left), although this often still results in convergence unless a gross over-estimation of σ

has been made. The penalty for under-estimating noise is that the painting may not

converge to the optimal, since stroke attributes may not be allowed to vary sufficiently

to reach the best configuration. Although the placement of strokes is governed primarily

by the relaxation process, each stroke has a guaranteed number of hop sites, and hop

lengths in inverse proportion to the salience of the image regions they cover. Selection

of reasonable values for minimum hop length and count prevents the output of system

tending toward photorealism, should such an attraction evolve.
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Further contributions of our method were the use of a user trained measure of salience

(which the author played a collaborative role in developing, see Section 4.3). The ad-

vantages of using this method were two-fold. First, the salient artifacts encountered

were classified into one of several trained categories (such as edges, or ridges). This

allowed us to automatically differentiate stroke rendering style over the image; a novel

contribution. Second, the measure represented a more subjective approach to problem

of estimating image salience.

There are a number of potential avenues for development of the GA based relaxation

process. An interesting investigation might be to allow users, rather than our objective

function, to choose survivors for each iteration of the GA, and to investigate whether

such a system might assist the exploration of alternative rendering styles. However

this would undoubtedly increase the demands on user time, which are currently very

low for our system. We might also choose to introduce novel additional constraints

into the relaxation process. For example, explicitly including an information theoretic

constraint controlling the density of stroke coverage for a region; this is currently a

stochastic decision performed once for each painting generated. More generally, we

believe the most interesting direction for development would be to explore alternative

objective functions for painting using constraints. A natural extension of the system

would be to devise a library of constraints, by studying a range of artists’ painting

styles. The distributed GA painting system could then be applied to fit a particular

painting model (selected by a user) to a photograph, thus painting that photograph in

one of a range of established artistic styles. Depending on the commonalities identified

between styles, this “paint by model fitting” approach could potentially yield a single

versatile system capable of generating many artistic styles within a single parameter

space.

Simplifying assumptions have been made in the salience measure. For example, the

decision to use spherical JND surfaces in the visibility operator, and the use of a single

Gaussian for clustering during rarity were made on the grounds of unattractive com-

putational complexity during clustering. Work continues at Bath to investigate higher

level models for the classifier of Section 4.3.3, which take into account neighbouring

regions to produce a more context sensitive classification of artifacts.

As regards rendering, we might choose to texture strokes to produce more realistic brush

patterns, although this should be a post-processing step so as not to introduce undue

error in the comparison of salience maps. Many techniques apply texture mapping

to strokes [71, 103, 140], and a bump mapping technique was also proposed in [73].

Highly realistic volume based hairy brush models have recently been proposed [177]
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which could be swept along the Catmull-Rom spline trajectories generated by our al-

gorithm. However, we have concentrated primarily upon stroke placement rather than

media, and we leave such implementation issues open. We believe the most productive

avenues for future research will not be in incremental refinements to the system, but

rather will examine alternative uses for salience measures in the production of image-

space artistic renderings.

The electronic Appendix C contains high resolution versions of all paintings presented

in this chapter (see /paintings).


