
Chapter 3

Painterly and Cubist-style

Rendering using Image Salience

In this chapter we make observations on the manner in which artists draw and paint,

and contrast this with the spatially local manner in which existing automatic AR

techniques operate. To address this discrepancy we introduce the use of a globally

computed perceptual salience measure to AR, which we apply to propose a novel al-

gorithm for automatically controlling emphasis within painterly renderings generated

from images1. We also propose a further algorithm which uses conceptually high level,

salient features (such as eyes or ears) identified across set of images as a basis for pro-

ducing compositions in styles reminiscent of Cubism2. These algorithms support our

claim that higher level spatial analysis benefits image-space AR — specifically, enhanc-

ing aesthetic quality of output (though controlled emphasis of detail) and broadening

the gamut of automated image-space AR to include artistic styles beyond stroke-based

rendering.

3.1 Introduction

A drawing or painting is an artist’s impression of a scene encapsulated on a two-

dimensional canvas. Traditional artists often build up their renderings in layers, from

coarse to fine. Coarse structure in a scene is closely reproduced, either using a trained

eye, or by “squaring up”; overlaying a grid to create correspondence between image

and canvas. By contrast, details within the scene are not transcribed faithfully, but are

individually stylised by the artist who can direct the viewer’s focus to areas of interest

through judicious abstraction of the scene. Typically an artist will paint fine strokes to

1The salience adaptive painterly rendering technique was published in [22], and was awarded the
Terry Hewitt prize for best student conference paper.

2An earlier version of our Cubist rendering work was published in [23].
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Figure 3-1 Two examples of paintings illustrating the artist’s importance-driven stylisa-
tion of detail. Non-salient texture in the background has been abstracted away, yet salient
details are emphasised on the figures (left) and portrait (right) using fine strokes.

emphasise detail deemed to be important (salient) and will abstract the remaining de-

tail away. By suppressing non-salient fine detail, yet implying its presence with coarser

strokes or washes, the artist allows the viewer to share in the experience of interpreting

the scene (see, for example, the paintings in Figure 3-1). Tonal variation may also be

used to influence the focus, or centre of interest, within a piece [69].

The omission of extraneous, unimportant detail has been used to improve the clarity

of figures in medical texts, such as Gray’s anatomy [60] which consists primarily of

sketches. Such sketches remain common practice in technical drawing, and were also

used heavily by naturalists in the 19th century. In cinematography too, camera focus

is often used to blur regions of the scene, and so redirect the viewer’s attention. Both

adults and children can be observed to create quick sketches and drawings of a scene by

jotting down the salient lines; effectively leaving the viewer the task of interpreting the

remainder of the scene. Picasso is known to have commented on what he regarded as

the pain-staking nature of Matisse’s art [64]; suggesting that Matisse worked by tracing

the lines of a subject, then tracing the lines of the resulting drawing, and so on, each

time stripping down the figure further toward its essence — “... He is convinced that

the last, the most stripped down, is the best, the purest, the definitive one”. In effect

Matisse is iteratively refining his sketches to the few lines and strokes he deems to be

salient.

We have observed (Section 2.6) that the heuristics of fully automatic AR techniques

modulate the visual attributes of strokes to preserve all fine detail present in the source

image. Specifically the emphasis, through level of stroke detail, afforded to a region

within an artistic rendering is strongly correlated with the magnitude of high frequency
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content local to that region. Such behaviour can be shown to differ from artistic prac-

tice in the general case. First, consider that fine detail, such as a fine background

texture, is often less salient than larger scale objects in the foreground. An example

might be a signpost set against a textured background of leaves on a tree, or a flag-

stone set in a gravel driveway. Second, consider that artifacts of similar scale may

hold differing levels of importance for the viewer. We refer the reader back to the ex-

ample of the portrait against a striped background (Figure 3-3, middle-left), in which

the face and background are of similar scale but of greatly differing importance in the

scene. An artist would abstract away high frequency non-salient texture, say, on a

background, but retain salient detail of similar frequency characteristic in a portrait’s

facial features. This behaviour is not possible with automatic AR algorithms which

seek to conserve all fine detail in a rendering, irrespective of its importance in the scene.

The level of detail rendered by existing automatic AR techniques is determined by

the user. Constants of proportionality must be manually set which relate stroke size

(and so, detail in the final rendering) with high frequency magnitude. The values of

these parameters are constant over the entire image and, in practice, setting these val-

ues is a tricky, iterative process, which often requires several runs of the algorithm to

produce an aesthetically acceptable rendering [58, 71, 103]. Keeping too little of the

high frequency information causes salient detail to be lost, and the painting to appear

blurry; keeping too much causes retention of non-salient texture (too many details in

the “wrong places”) which cause the output to tend toward photorealism. Moreover, if

salient detail is of lower frequency magnitude than non-salient detail, then there is no

acceptable solution obtainable by varying these constants — either some non-salient

detail will be erroneously emphasised to keep the salient detail sharp, or some salient

detail will be abstracted away in an effort to prevent emphasis of non-salient detail.

This, of course, points to a flaw in the original premise; that all fine detail is salient.

We thus observe that although for a given image the set of salient artifacts may in-

tersect the set of fine scale artifacts, there may remain many salient artifacts that are

not fine scale, and many fine scale artifacts that are not salient. We conclude that

many images exist for which current AR methods do not emphasise some or all of the

salient elements in the scene. The behaviour of current AR is at odds with that of

the artist, and it is arguably this discrepancy that contributes to the undesirable im-

pression that AR synthesised renderings are of machine, rather than true human origin.

In our opening paragraphs (Chapter 1), we argued that the notion of importance, or

salience, is a relative term. When one speaks of the salience of regions in an image, one

speaks of the perceptual importance of those regions relative to that image as a whole.

Global analysis is therefore a prerequisite to salience determination; the independent
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examination of local pixel neighbourhoods can give no real indication of salience in an

image. The aesthetic quality of output synthesised by automatic AR would benefit

from higher level (global) spatial analysis of images to drive the decision processes gov-

erning emphasis during rendering.

A further observation in Chapter 2 notes the ubiquitous trend in AR to process images

at the conceptually low-level of the stroke (stroke based rendering). There are certain

advantages to processing artwork at this low-level; algorithms are not only fast and

simple to implement, but very little modelling of the image content is required — we

have already highlighted the frequency based decision model used to guide rendering

heuristics. The simplicity of this modelling admits a large potential range of images for

processing. However this low-level, stroke based approach to rendering also restricts

current AR to the synthesis of traditional artistic stroke based styles (such as hatch-

ing [135], stippling [43] or painterly impressionism [103]). We argue that a higher level

of abstraction is necessary to extend the gamut of automated AR to encompass compo-

sitional forms of art, including abstract artistic styles such as Cubism. The successful

production of such compositions is again predicated upon the development of a global

image salience measure, which may be applied to identify high level salient features

(for example, eyes or ears in a portrait). Such features may then be used as a novel

alternative to the stroke as the atomic element in artistic renderings. In this case,

the model we choose must be sufficiently general to envelope a large range of input

imagery, but sufficiently high level to allow the extraction of these conceptually higher

level salient features.

In the next Section, we propose a rarity based measure of salience which performs a

global statistical analysis of the image to determine the relative importance of pixels.

We apply this measure to develop two novel algorithms, each respectively addressing

one of the two deficiencies in AR identified in the preceding paragraphs:

1. Limited ability to control emphasis, through level of detail, in renderings.

2. Limited diversity of style.

First, we propose a novel single-pass painting algorithm which paints to conserve salient

detail and abstract away non-salient detail in the final rendering. Arguably this ap-

proach is more in line with traditional artistic practice, and we demonstrate the im-

proved results (with respect to level of emphasis in the rendering) of our salience based

rendering in comparison to existing AR. This algorithm serves as a pilot for salience

driven painterly rendering, which we build upon to propose a salience-adaptive, relax-

ation based painting technique in Chapter 4, and extend to process video footage into

painterly animations in Chapter 8. Second, we propose a novel rendering algorithm
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Figure 3-2 Our rarity based salience measure computes a series of derivatives for each
image location, which form feature vectors in a high dimensional space. By fitting an
eigenmodel to this distribution and isolating the outliers (the green hyper-ellipse boundary
indicates a threshold), we may identify salient image artifacts.

capable of producing compositions in a Cubist-style, using salient features (such as

eyes, ears etc.) identified across an image set. Control of the AR process is specified

at the compositional, rather than the stroke based level; a further novel contribution

to AR. We incorporate both these algorithms into a single system, where we apply our

salience based painting algorithm to the output of the Cubist rendering algorithm to

give our compositions a painterly appearance. Furthermore, we show how preferential

rendering with respect to salience can emphasise detail in important areas of the com-

position (for example, to bring out the eyes in a portrait using tonal variation). This

salience adaptation is a novel contribution to automatic image-space AR that could

not be achieved without a spatially higher level, global analysis of the source image.

3.2 A Global Measure of Image Salience

We locate salient features within a single image by modifying a technique due to Walker

et al [163], who observe that salient pixels are uncommon in an image. The basic

technique is to model the statistical distribution of a set of measures associated with

each pixel, and to isolate the outliers of this distribution. The pixels corresponding to

these outliers are regarded as salient (Figure 3-2).

To compute these measures, x, over each pixel we convolve each RGB channel of

the image with a set of origin-centred 2D Gaussian derivative filters. Specifically we

use 5 first and second order directional derivatives: ∂G(x, y;σ)/∂x, ∂G(x, y;σ)/∂y,

∂2G(x, y;σ)/∂x2, ∂2G(x, y;σ)/∂y2, and ∂2G(x, y;σ)/∂x∂y. These filters smooth the

image before computing the derivative; they respond well to edge and other signals of
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characteristic scale σ, but as Figure 3-3 shows, our method is more general than edge

detection. We filter using octave intervals of σ, as such intervals contain approximately

equal spectral power. In our implementation we use σ values of 1, 2, 4 and 8; thus with

each pixel we associate a vector x of 20 = 5× 4× 3 components.

For an image of M pixels we will have M vectors x ∈ <n, where for us n = 60. We

assume these points are Gaussian distributed, which we represent using an eigenmodel;

a simple and convenient model that works acceptably well in practice. The eigenmodel

provides a sample mean µ; a set of eigenvectors each a column in orthonormal matrix U ;

each eigenvector has a corresponding eigenvalue along the diagonal of Λ. An eigenmodel

allows us to compute the squared Mahalanobis distance of any point x ∈ <n:

d2(x) = (x− µ)TUΛUT (x− µ) (3.1)

The Mahalanobis distance measures the distance between a point and the sample mean,

and does so using the standard deviation (in the direction x−µ). This provides a con-

venient way of deciding which sample points are salient; we use a threshold, d2(x) > 9,

since 97% of normally distributed points are known to fall within 3 standard deviations

of the mean. This threshold has also been shown empirically to produce reasonable

results (Figure 3-3). Notice that because we look for statistical outliers we can record

pixels in flat regions as being salient, if such regions are rare; a more general method

than using high frequency magnitude.

Figure 3-3 demonstrates some of the results obtained when applying our salience mea-

sure to examples of real and synthetic data, and compares these results to “ground

truth” importance (salience) maps which are representative of those generated by in-

dependent human observers. The global measure can be seen to out-perform local

high-frequency detectors in the task of “picking out” salient artifacts, even against a

textured background. We use the Sobel edge detector for comparison, as it is used by

the majority of image-space AR techniques. Our measure is also shown to be sensitive

to chromatic variations, whereas the Sobel edge detector used in existing AR tech-

niques is concerned only with luminance. We observe that our global salience measure

produces salience maps qualitatively closer to the ground truth that the local (Sobel)

edge measure.
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Source Image Local Edge Global Salience Ground Truth
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Figure 3-3 Top: Examples of real and synthetic images, processed by a local edge filter
(Sobel) and our global, rarity based salience map. We observe that our approach pro-
duces maps qualitatively closer to a manually specified ground truth for image salience;
we can “pick out” the circle and face where edge detection fails. Chromatic variations,
scale and orientation are encapsulated in the rarity measure. Bottom: ROC curve rep-
resenting sensitivity (true positive rate) vs. specificity (one minus false positive rate), as
the Mahalanobis distance threshold is varied. The source image for these results is given
in Figure 3-11 (middle-left). The pure chance response is plotted in dotted red. Right:
Performance of the measure with various thresholds, derived from the ROC. The manually
specified ground truth segmentation for this comparison is inset.
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3.3 Painterly Rendering using Image Salience

We now describe a novel single-pass painterly rendering algorithm which applies our

global salience measure to generate pointillist-style painterly renderings from pho-

tographs. By automatically controlling the level of emphasis in the painting (adapting

the level of detail according to the salience of the region being painted), we address the

first issue — aesthetic quality of rendering — raised in Section 3.1.

Our algorithm accepts a 2D image as input, and outputs a single 2D painting generated

from that image. Paintings are formed by sampling a reference image at regular spatial

intervals to generate a series of three-dimensional brush strokes; inverted cones with

superquadric cross-section. The superquadric class of functions can be represented by

the equation:

(x

a

) 2

α
+
(y

b

) 2

α
= r

2

α (3.2)

where a and b are normalised constants (a+ b = 1; a, b > 0) which influence the hori-

zontal and vertical extent of the superquadric respectively, and r is an overall scaling

factor. We observe that equation 3.2 reduces to the general equation for a closed el-

liptic curve when α = 1, tends toward a rectangular form as α = 0, and toward a

four-pointed star as α → ∞. Thus the superquadrics can express a wide variety of

geometric forms, using a single parameter.

Each generated conic stroke is z-buffered and the result is projected orthogonally onto

the (2D) image plane to generate the final painting (Figure 3-4). There are seven pa-

rameters to each stroke; a, b, r, α (from equation 3.2), RGB colour j(c), orientation

angle θ and height h. Parameter α determines the form of the stroke, and is preset by

the user. Low values (< 1) of α create cross-sections of a rectangular form, giving the

image a chiselled effect, whilst higher values of α produce jagged brush styles. Strokes

are shaded according to the colour c of the original image at the point of sampling.

Function j(c) transforms, or “jitters”, the hue component of stroke colour c by some

small uniformly distributed random quantity, limited by a user defined amplitude ε. By

increasing ε, impressionist results similar to those of Haeberli’s interactive systems [62]

can be automatically produced. Further brush styles can also be generated by tex-

turing the base of each cone with an intensity displacement map, cut at a random

position from a sheet of texture; we find that this process greatly enhances the natural,

“hand-painted” look of the resulting image. The remaining five stroke parameters (a,

b, r, θ, and h) are calculated by an automated process which we now describe.

Stroke height h, is set proportional to image salience at the point of sampling. Higher
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Figure 3-4 Strokes take the form of inverted cones with superquadric cross-section, and
are z-buffered to produce the final painting.

salience image pixels tend to correspond to the features and detail within the image,

and so produce strokes of greater height to protrude over the lower salience strokes

in the z-buffer. The scale of the base of the cone, r, is set inversely proportional to

salience magnitude. This causes small, definite strokes to be painted in the vicinity of

artifacts corresponding to salient detail in the image. Larger strokes are used to shade

non-salient areas, mimicking the behaviour of the artist. Hence our method tends to

draw low, fat cones in regions of low salience, and tall, narrow cones in regions of high

salience.

We also derive gradient information from the reference image, by convolving the inten-

sity image with a Gaussian derivative of first order. Stroke orientation θ is derived from

gradient orientation; the larger axis of the superquadric is aligned tangential to the edge

direction. In areas where gradient magnitude is low, orientation derived in this manner

becomes less reliable. We therefore vary the eccentricity of the superquadric (a, b) in

relation to the magnitude of the image gradient at the position sampled. If the gradient

is low, then a ≈ b, and orientation becomes less important as the superquadric is not

greatly expressed in either horizontal or vertical directions. Where image gradient is

high, then a > b and the superquadric stretches out. One emergent property of this

approach is that strokes typically stretch along salient edges tending to merge, often

causing edge highlights to appear as though produced by fewer, longer strokes. This

is typical of the manner in which an artist might manually render such highlights, and

adds aesthetic quality to the image.

Although we have used a global salience measure to drive emphasis in the rendering
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Figure 3-5 Comparison of our salience based method. Left: Results of an impressionist
algorithm (due to Litwinowicz [103]). Middle: Our algorithm, but driven using Sobel
response rather than global salience. Right: Our proposed salience-adaptive algorithm;
non-salient background detail is abstracted away, whilst salient detail is emphasised on the
face. Observe that the Sobel driven algorithms (left, middle) emphasise all high frequency
detail to a similar degree, detracting from the emphasis given to the facial features. See
Figure 3-3 for corresponding Sobel and salience maps.

Figure 3-6 Left: Three images of identical subject; the original image (top), painterly
rendering with salience (middle), and painterly rendering without salience (bottom). The
right hand column holds the salience map of the original image (top), and the edge maps of
the two paintings (middle, right). Right: Strokes applied with (top) and without (bottom)
salience adaptation. We make the qualitative observation that salient detail is conserved
using our painterly technique.
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Figure 3-7 Illustrating the application of our rendering algorithm. A section of the phone-
box rendering has been magnified, demonstrating the alignment of strokes tangential to
the salient window frames. Portions of the pickup truck painting with (inset, left) and
without (inset, right) salience are shown. The source image and salience map are also
inset below.
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Figure 3-8 A “salient sketch” (right) produced by adapting our painterly technique to
draw along the principal axis of each superquadric stroke — demonstrating both the close
relationship between an artist’s sketch and a salience map, and the potential of salience
measures in driving alternative artistic rendering styles. In descending order, the original
image, our automatically derived rarity based salience map, and a ground salience map,
are shown on the left.

process, certain local measures have also been used to set attributes such as stroke

orientation. These are inherently local properties, and we are justified in setting them as

such; by contrast the concept of importance demands global analysis for computation.

3.3.1 Results and Qualitative Comparison

We present the results of applying our painting algorithm to a variety of images in

Figures 3-5, 3-6 and 3-7, and demonstrate two advantages of our salience adaptive ap-

proach to painting.

Figure 3-5 contains three paintings of identical subject, painted using automatic, single-

pass painterly algorithms. The right-hand painting was created using our global salience

adaptive painting scheme, and demonstrates how non-salient detail (in this case, repet-

itive background texture) is abstracted away with coarse strokes. Salient detail has

been emphasised with fine strokes, and the contrast produced against the coarser back-

ground serves to further emphasise this detail. The middle painting was generated

using our algorithm, but for the purposes of illustration we have replaced our global

salience measure with Sobel intensity gradient magnitude; the measure used by vir-

tually all automatic image-space AR algorithms. Observe that the non-salient back-
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ground, and salient foreground are emphasised equally, since they exhibit similar high

frequency characteristics. The left-hand painting was generated using a recent daub

based, painterly algorithm from the literature [103]. This algorithm is also driven by lo-

cal, high frequency based heuristics and so also erroneously emphasises the non-salient

background texture. A sketchy rendering of the portrait has been generated in Fig-

ure 3-8 by plotting the principal axis of each superquadric. This serves to illustrate

both the alignment and placement of individual strokes, and the possibility of alterna-

tive salience driven rendering styles.

Our algorithm causes the least salient strokes to be laid down first, much as an artist

might use a wash to generate wide expanses of colour in an image, and fill in the de-

tails later. Without this sensitivity to salience, the rendering procedure can obscure

regions of high salience with strokes of lower salience, demonstrated by Figure 3-6. By

setting the conic height h proportional to salience, salient detail is conserved within the

painting — this is especially clear around the eyes and nose in Figure 3-6, left-middle.

Ignoring the implicit ordering of strokes can still produce a painterly effect, but with-

out the adaptive sensitivity to salient detail that our method provides (Figure 3-6,

left-bottom). By inspection we make the qualitative observation that the majority of

salient pixels in the original, and edge pixels (corresponding to detail) in the salience-

painted images correspond; this is not true for the non-salience adaptive paintings.

A salience adaptive approach to painting therefore benefits aesthetic quality in two

respects. Not only are salient regions painted with improved clarity (strokes from

non-salient regions do not encroach upon and distort regions of greater salience — Fig-

ure 3-5), but renderings also exhibit a sense of focus around salient regions due to the

abstraction of non-salient detail (Figure 3-6).

Figure 3-7 contains a gallery of paintings generated by our algorithm. The image of the

pickup truck was rendered with superquadric shape parameter α = 1. Portions of the

painting rendered with and without salience adaptation are shown inset, as well as with

the source image. The phone-box has been rendered with α = 0.5; in particular we

draw attention to the detail retained in the window frames (inset). Strokes have been

aligned tangential to the edges of each frame, merging to create sweeping brush strokes.

The strokes rendering the window glass do not encroach upon the window frames, which

are more salient, and for the most-part, salient detail is conserved within the painting.

A clear exception where salient detail has been lost, is within the plaque containing

the words “Telephone”. Our conditioned ability to immediately recognise and read

such text causes us to attribute greater salience to this region. The degradation in

aesthetic quality is therefore not due to the argument for salience adaptive painting,
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but rather due to the salience map of our measure diverging from the ground truth (the

expectation of the viewer). This highlights the simplistic nature of our rarity driven

salience measure, and suggests that one’s experiences cause certain classes of artifact

to be regarded as more salient than others. We return to this point later in Chapter

4, when we extend our single-pass salience adaptive painting algorithm in a number of

ways — one of which is to make use of a trainable salience measure, capable of learning

the classes of artifact the user typically deems to be salient.

3.4 Cubist-style Rendering from Photographs

We now describe a novel AR algorithm which addresses the second deficiency in AR

identified in Section 3.1; the limited diversity of styles available by approaching AR

through the low-level paradigm of stroke-based rendering. Our aim was to investigate

whether aesthetically pleasing art, reminiscent of the Cubist style, could be artificially

synthesised. We are influenced by artists such as Picasso and Braque, who produced art

work by composing elements of a scene taken from multiple points of view. Paradoxi-

cally the Cubist style conveys a sense of motion in a scene without assuming temporal

dependence between views. The problem of synthesising renderings in abstract styles

such as Cubism is especially interesting to our work, since it requires a higher level of

spatial analysis than currently exists in AR, in order to identify the salient features

used to form stylised compositions. By salient feature we refer to an image region con-

taining an object of interest, such as an eye or nose; a composition made from elements

of low salience would tend to be uninteresting. We considered the following specific

questions:

• How is salience to be defined so that it operates over a wide class of input images?

• How should salient features be selected from amongst many images, and how

should the selected features be composed into a single image?

• How should the angular geometry common in Cubist art be reproduced?

• How should the final composition be rendered to produce a painted appearance?

Resolution of the first two questions provides the basic mechanism by which a Cubist-

like image can be formed; resolution of latter two questions enhances aesthetic quality.

Our algorithm accepts one or more 2D images taken from different viewpoints as in-

put (see Figure 3-17a), and produces a single 2D image rendered in the Cubist style.

Salient artifacts within each image are first identified using our global salience measure

(Section 3.2). This can produce disconnected features, which requires correction; in our

case by minimal user interaction. These features are geometrically distorted. A subset
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is then selected and composited, ensuring that non-selected features do not inadver-

tently appear in the final composition – näive composition allows this to happen. The

composition process is stochastic, and a new image may be produced on each new run

of the method. An element of control may also be exerted over the composition pro-

cess, affecting the balance and distribution of salient features in the final painting. The

ability to influence rendering at a compositional level, rather than setting parameters of

individual strokes, is a novel contribution of our method. In rendering a painting from

the final composition we make use of our previously described salience based painting

algorithm (Section 3.3) which treats brush strokes in a novel way, ensuring that salient

features are not obscured.

We begin by registering all source images so that objects of interest, such as faces, fall

upon one another; this assists the composition process in subsection 3.4.3. We threshold

upon colour to partition foreground from background, and translate images so that

first moments of foreground are coincident. Finally we clip the images to a uniform

width and height. This step creates spatial correspondence between source images on

a one-to-one basis: pixels at the same location (x, y)T in any image correspond. The

remaining algorithm stages are of greater interest, and we describe each of them in

turn in the following subsections.

3.4.1 Identification of Salient Features

We wish to find a set of salient features amongst the registered images. These images

should be unrestricted in terms of their subject (for example, a face or guitar). In

addition, we want our salient features to be relatively “high level”, that is they corre-

spond to recognisable objects, such as noses or eyes. This implies we need a definition

of salience that is both general and powerful; such a definition does not currently exist

in the computer vision literature, or elsewhere. However, we can make progress by

choosing a definition of salience that is sufficiently general for our needs, and allow

user interaction to provide power where it is needed.

We begin by applying our global salience measure to the set of source images (Sec-

tion 3.2). In practice salient pixels within these images form spatially coherent clusters,

which tend to be associated with interesting objects in the image, including concep-

tually high level features such as eyes (Figure 3-3). However, our method is general

purpose, and therefore has no specific model of eyes, or indeed of any other high level

feature. It is therefore not surprising that what a human regards as a salient feature

may be represented by a set of disconnected salient clusters.

Given that the general segmentation problem, including perceptual grouping, remains
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unsolved we have two choices: either to specialise the detection of salient regions to

specific classes of source images, such as faces (see the fully automatic case study

described later in Section 3.5); or to allow the user to group the clusters into features.

We adopt the latter approach for its power and simplicity: powerful because we rely

on human vision, and simple not only to implement but also to use. We allow the

user to draw loose bounding contours on the image to interactively group clusters.

This mode of interaction is much simpler for the user than having to identify salient

features from images ab initio; that is with no computer assistance. Feature grouping

is also likely to be consistent between source images, because our salience measure

provides an objective foundation to the grouping. The contour specified by the user

forms the initial location for an active contour (or “snake”), which is then iteratively

relaxed to fit around the group of salient clusters. Active contours are parametric

splines characterised by an energy function Esnake; the sum of internal and external

forces [91]. Internal forces are determined by the shape of the contour at a particular

instant, and external forces are determined by the image upon which the contour lies.

Here the spline is defined by a parametric function v(s):

Esnake =

∫ 1

0
Esnake(v(s))ds (3.3)

Esnake =

∫ 1

0
Einternal(v(s)) + Eexternal(v(s))ds (3.4)

During relaxation we seek to minimise the contour’s energy by iteratively adjusting the

position of the spline control points, and thus tend toward an optimal contour fit to

the salient feature. In our case energy is defined as:

Einternal = α
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∣
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(3.5)

Eexternal = γf(v(s)) (3.6)

where the two terms of the internal energy constrain the spacing of control points and

curvature of the spline respectively. The external energy function is simply the sum

of salience map pixels bounded by the spline v(s), normalised by the number of those

pixels. Constants α, β and γ weight the importance of the internal and external con-

straints and have been determined empirically to be 0.5, 0.25 and 1. In our application

we fit an interpolating (Catmull-Rom) spline [51] through control points to form the

parametric contour v(s). We assume that the user has drawn a contour of approximate

correct shape around the feature clusters; the weighting constants have been chosen
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Figure 3-9 Four stages of a geometric warp where α′ = 0.3. From left to right: (a) the
source and target superquadrics, fitted about a salient feature; (b) the continuous forward
vector field; (c) the mesh of quadrilaterals (mapped pixel areas); (d) the final distorted
image.

to promote retention of initial shape in the final contour. Relaxation of the snake

proceeds via an algorithm adapted from Williams [167], in which we blur the salience

map heavily in early iterations and proportionately less on subsequent iterations. This

helps prevent the snake snagging on local minima early in the relaxation process. Our

initial approach [23] made use of a convex hull based grouping technique to form salient

clusters, however this precluded the possibly of accurately extracting concave features.

Further advantages of the snake segmentation method are a tighter, more accurate fit

to features, and greater robustness to noise. There is also a lesser degree of sensitivity

upon the initial positioning of the contour, since the snake shrinks to fit the exterior

boundary of the salient pixel cluster.

The union of the salient features identified in each source image forms the set of salient

features we require, which we call F . In addition to grouping clusters into features, the

user may also label the features. These labels partition the set of all salient features

F into equivalence classes, such as “eyes”, providing a useful degree of high level

information (these classes represent a simple model of the object in the picture). We

make use of F , and associated equivalence classes, throughout the remaining three

stages of our algorithm.

3.4.2 Geometric Distortion

We now wish to distort the identified features, in F , to produce the more angular forms

common in Cubist art. Our approach is to construct a continuous vector field V over

each source image, which is a sum of the contributions made by distorting the set of all

features f ∈ F belonging to that image. That is, we define a vector-valued distortion

function g : <2 7→ <2, so that for every point u ∈ <2, we have g(u) = u+ V(u) where

V (u) =
∑

φ∈f

dφ (u) (3.7)

To define a particular distortion function dφ(.) we fit a superquadric about the perime-
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ter of feature φ, then transform that fitted superquadric to another of differing order;

thus specifying a distortion vector field dφ(<2). We now describe the details of this

process.

Recall equation 3.2 in which the superquadric class of functions may be represented in

Cartesian form by:

(x

a

) 2

α
+
(y

b

) 2

α
= r

2

α (3.8)

We use a parametric form of equation 3.2 determined by an angle θ about the origin, by

which we correlate points on the perimeter of one superquadric with those on another.

x =
r cos(θ)

(

|cos(θ)/a| 2α + |sin(θ)/b| 2α
)α

2

(3.9)

y =
r sin(θ)

(

|cos(θ)/a| 2α + |sin(θ)/b| 2α
)α

2

(3.10)

We calculate the distortion for a given feature by fitting a general superquadric of order

α, and warping it to a target superquadric of new order α′. Features whose forms differ

from this target superquadric are therefore distorted to a greater degree than features

that already approximate its shape; thus each feature boundary converges toward the

geometric form specified by α′. Typically we choose α′ < 1 to accentuate curves into

sharp angles. The initial superquadric is fitted about the bounding pixels of the feature

using a 6-dimensional Hough transform based search technique described in Appendix

A.1. We find this global fitting method suitable for our purpose due to its relatively

high tolerance to noise.

Recall the distortion function dφ(.); we wish to produce a displacement vector v for a
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Figure 3-10 Left: The fitted and target superquadrics, described by α and α′ respec-
tively. Intersection with line ~Ou is calculated using angle θ. Right: The decay function
(equation 3.12) used to dampen the vector field magnitude.
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given point u = (ux, uy). We first calculate the points of intersection of line ~Ou and

the two superquadric curves specified by α and α′, where O is the origin of both su-

perquadrics (these origins are coincident). We derive the intersections by substituting

a value for θ = arctan(uy/ux) into equations 3.9) and (3.10. We denote these intersec-

tion points by β and β′ respectively (see Figure 3-10, left). The vector β ′−β describes

the maximum distortion in direction θ. We scale this vector by passing the distance (in

superquadric radii) of point u from the origin, through a non-linear transfer function

T (.). So, for a single feature φ:

dφ(u) = T
(

|u−O|
∣

∣β −O
∣

∣

)

(

β′ − β
)

(3.11)

The ideal characteristics of T (x) are a rapid approach to unity as x → 1, and a slow

convergence to zero as x → ∞. The rise from zero at the origin to unity at the

superquadric boundary maintains internal continuity, ensuring a topologically smooth

mapping within the superquadric (Figure 3-10, right). Convergence to zero beyond

unit radius mitigates against noticeable distortion to surrounding areas of the image

that do not constitute part of the feature. The Poisson distribution function (equation

3.12) is a suitable T , where Γ(.) is the gamma function [123] and λ is a scaling constant.

T (x) =
λxeλ

Γ(x)
(3.12)

Recall from equation 3.7 that we sum the individual vector fields of each feature be-

longing to a specific source image, to construct the overall vector field for that image.

With this field defined, we sample those points corresponding to the corners of every

pixel in the source image, and so generate their new locations in a target image. This

results in a mesh of quadrilaterals, such as that in Figure 3-9c. Mapping each pixel

area from the original bounded quadrilateral to the target bounded quadrilateral yields

the distorted image.

The distortion process is repeated for each source image, to produce a set of distorted

images. At this stage we also warp the bounding polygon vertices of each feature, so

that we can identify the distorted salient features F ′. For reasons of artistic prefer-

ence, we may wish to exercise control to use different values of α′ for each equivalence

class; for example, to make eyes appear more angular, but leave ears to be rather more

rounded.

We draw attention to issues relating to the implementation of our method; specifically

that the feature distortion stage can be relatively expensive to compute. This bottle-

neck can be reduced by: (a) precomputing the transfer function T (.) at suitably small
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discrete intervals, and interpolating between these at run-time; (b) using a fast but

less accurate method of integrating distorted pixel areas such as bilinear interpolation.

In both cases we observed that the spatial quantisation induced later by the painterly

rendering stage mitigates against any artifacts that may result.

3.4.3 Generation of Composition

We now describe the process by which the distorted salient features are selected from

F ′ and composited into a target image. Specifically we wish to produce a composition

in which:

• The distribution and balance of salient features composition may be influenced

by the user.

• Features do not overlap each other.

• The space between selected salient features is filled with some suitable non-salient

texture.

• Non-salient regions are “broken up” adding interest to the composition, but with-

out imposing structure that might divert the viewer’s gaze from salient regions.

A subset of the distorted salient features F ′ are first selected via a stochastic process.

These chosen features are then composited, and an intermediary composition produced

by colouring uncomposited pixels with some suitable non-salient texture. Large, non-

salient regions are then fragmented to produce the final composition.

Selection and Composition

We first describe the process by which a subset of distorted salient features in F ′ are

selected. We begin by associating a scalar s(f) with every feature f ∈ F :

s(f) = A(f) · T (E(f)) (3.13)

in effect the area of the feature A(f) weighted by a function T (.) of the fractional size

of the equivalence class to which it belongs (which we write as E(f)). By varying the

transfer function T (.), the user may exercise control over the balance of the composition.

We use:

T (x) = xβ (3.14)
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Figure 3-11 Left: Three source images used to create a Cubist portrait. Right: Features
selected from the set F ′ via the stochastic process of Section 3.4.3 with balance parameter
β = 1. Notice that the number of facial parts has a natural balance despite our method
having no specific model of faces; yet we still allow two mouths to be included. Pixels not
yet composited are later coloured with some suitable non-salient texture.

β is a continuous user parameter controlling visual “balance” in the composition. If

set to unity, features are distributed evenly in similar proportion to the equivalence

classes of the original image set. By contrast β = 0 introduces no such bias into the

system, and a setting of β = −1 will cause highly unbalanced compositions, in which

rarer classes of feature are more likely to be picked.

We treat each scalar s(f) as an interval, and concatenate intervals to form a range.

This range is then normalised to span the unit interval. We choose a random number

from a uniform distribution over [0, 1], which falls in a particular interval, and hence

identifies the corresponding feature. Features of larger area with large associated scalar

values (s(f)) tend to be selected in preference to others, which is a desirable bias in

our stochastic process. The selected feature is removed from further consideration, and

included in a set C, which is initially empty.

This selected feature may intersect features in other images, by which we mean at a

least one pixel (i, j) in the selected feature may also be in some other feature in some

other image (recall the registration process aligns pixels to correspond on a one-to-one

basis). Any features that intersect the selected feature are also removed from further

consideration, but are not placed in the set C.

We have found the choice of β = 1 to produce aesthetically pleasing renderings. In this

case the process is biased toward producing a set C containing features whose equiv-

alence classes are similar in proportion to the original source images. For example,

if the original subject has two eyes and a nose, the algorithm will be biased toward
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6          -    Use pixels from image X
7          -    Use pixels from X or Y (arbitrary)

1          -    Use pixels from image X
2          -    Use pixels from X or Y (arbitrary)
3          -    Use pixels from image Y
4          -    Use pixels from image X
5          -    Use pixels from image Y

9          -    Use pixels from image Y
8          -    Use pixels from image X
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B         -     Chosen feature from image Y
A         -    Chosen feature from image X

C,D,E -     Unchosen features from X, Y or Z.

Figure 3-12 (a) potential intersections between features (top); (b) final compositions
without (left) and with (right) the second stage of processing.

producing a composition also containing two eyes and a nose, but deviation is possible,

see Figure 3-11.

The second step of our process is concerned with the composition of the chosen fea-

tures in C to produce the final image. We begin this step by copying all chosen features

into a target plane, producing a result such as Figure 3-11. In order to complete the

composition we must determine which image pixels have not yet been composited, and

colour them with some suitable non-salient texture.

An initial approach might be to compute a distance transform [145] for each non-

composited pixel, which determines its distance to the nearest feature. The corre-

sponding pixel in the distorted source image containing this nearest feature is used to

colour the uncomposited pixel. This produces similar results to a Voronoi diagram,

except that we seed each Voronoi segment with a region rather than a point. Unfortu-

nately this initial approach is unsatisfactory: under some circumstances regions may

be partially textured by unchosen salient features, and images such as Figure 3-12b

(left) may result. To mitigate against partial mouths and similar unappealing artifacts

requires greater sophistication, which we introduce by performing a second set of in-

tersection tests.

We copy each of the unchosen features onto the image plane, and test for intersection

with each of the chosen features C. If an unchosen feature u intersects with a cho-
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Figure 3-13 Illustrating composition from a collection of warped salient features in the
guitar image set. Composition balance parameter β = 1.

sen feature c, we say that ‘c holds influence over u’. Unchosen features can not hold

influence over other features. By examining all features, we build a matrix detailing

which features hold influence over each other. If an unchosen feature u is influenced by

exactly one chosen feature c, we extend feature c to cover that influenced area. We fill

this area by copying pixels from corresponding positions in the distorted image from

which c originates. Where an unchosen feature is influenced by several chosen features,

we arbitrarily choose one of these chosen features to extend over the unchosen one (Fig-

ure 3-12a, region 2). However, we do not encroach upon other chosen regions to do this

– and it may be necessary to subdivide unchosen feature areas (Figure 3-12a, regions

1, 3 and 4). Only one case remains: when two unchosen features intersect, which are

influenced by features from two or more differing source images (Figure 3-12a, region

7). In this case we arbitrarily choose between those features, and copy pixels from the

corresponding distorted source image in the manner discussed.

We now perform the previously described distance transform procedure on those pixels

not yet assigned, to produce our abstract composition.

Fragmentation of Non-salient Areas

The composition produced at this stage (Figure 3-14a, left) is often composed of pieces

larger than those typically found in the Cubist paintings. We wish to further segment

non-salient regions to visually “break up” uninteresting parts of the image, whilst avoid-

ing the imposition of a structure upon those areas.

We initially form a binary mask of each non-salient segment using information from

the previous distance transform stage of Section 3.4.3, and calculate the area of each

segment. We then average the area of the chosen salient features C, to produce a de-

sired “segment size” for the composition. Each non-salient segment is fragmented into

n pieces, where n is the integer rounded ratio of that segment’s area to the desired

segment size of the composition. To perform the segmentation we produce a dense

point cloud of random samples within the binary mask of each non-salient segment.

Expectation maximisation [41] is used to fit n Gaussians to this point cloud. We then
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Figure 3-14 (a) Composition after application of steps in Section 3.4.3 exhibiting large
non-salient segments (left) and a uniquely coloured finer segmentation (right) (b) Results
of finer segmentation and shading of non-salient areas in the composition.

calculate the Gaussian centre to which each pixel within a given mask is closest; a

Voronoi diagram is thereby constructed, the boundaries of which subdivide the non-

salient segment being processed into multiple non-salient fragments.

Each of the non-salient fragments must now be shaded to break up the composition. We

choose a point, or “epicentre” along each fragment’s boundary, and decrease the lumi-

nosity of pixels within that fragment proportional to their distance from the epicentre

(see Figure 3-15). The result is a modified intensity gradient across each fragment,

simulating light cast over a fragment’s surface. In practice it is desirable that no two

adjacent fragments have an intensity gradient of similar direction imposed upon them;

doing so induces a noticeable regular structure in non-salient areas, which can divert

the viewer’s attention from the more interesting salient features elsewhere in the com-

position. Placement of the epicentre at a random location upon the boundary produces

too broad a range of possible gradient directions, causing shading to appear as noise.

We therefore restrict shading to a minimal set of directions, calculated in the following

manner.
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A region adjacency graph is constructed over the entire composition; each non-salient

fragment corresponds to a node in the graph with vertices connecting segments adja-

cent in the composition. We then assign a code or “colour” to each node in the graph,

such that two directly connected nodes do not share the same colour. Graph colouring

is well-studied problem in computer science, and an minimal colour solution is known

to be NP-hard to compute. We therefore use a heuristic based approximation which

is guaranteed to return a colouring in P-time, but which may not be minimal in the

number of colours used (see Appendix A.2 for details). The result is that each fragment

is assigned an integer coding in the interval [1, t], where t is the total number of colours

used by our approximating algorithm to encode the graph.

The result of one such colouring is visualised in Figure 3-14a. The epicentre of each

fragment is placed at the intersection of the fragment’s boundary and a ray projected

from the centroid of the fragment at angle θ from vertical (Figure 3-15), where θ is

determined by:

θ = 2π

(

segment code

t

)

(3.15)

This expression guarantees placement of the epicentre at one of t finite radial positions

about the boundary of the segment, as the segment coding is an integer value.

The introduction of additional segmentation, and therefore edge artifacts, into non-

salient areas of the composition can have the undesired effect of diverting a viewer’s

gaze from salient features present in the picture. We mitigate against this effect in two

ways. First, we convolve the non-salient regions of the image with a low-pass filter ker-

nel such as a Gaussian. This has the effect of smoothing sharp edges between fragments,

but conserving the more gradual intensity differential over each non-salient fragment’s

3

Non−salient fragment
(Colour 1)

Non−salient fragment
(Colour 3)

θ

Epicentre

Contours equidistant
from epicentre

θ

Epicentre

θ
2

34

5

1

Template:

Figure 3-15 The geometry of two adjacent non-salient fragments, and a single template
determining the location of the epicentre within a fragment. The epicentre of a fragment
of colour i lies at the intersection of that fragment’s boundary and the ith template spoke.



PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 66

Figure 3-16 Comparison of two painted compositions with (left) and without (right)
preferential shading treatment to salient regions. Observe how salient features such as the
eyes are brought out within the salience adaptive composition; tonal variation has been
used to emphasise the salient regions via histogram equalisation.

surface. This also proves advantageous in that the jagged edges of lines partitioning

fragments are smoothed. Second, we use a variation upon histogram equalisation [145]

to boost contrast within the foreground of the composition (determined during image

registration), causing features such as eyes or noses to “stand out” from the softened

segmentation boundaries. Specifically, we calculate the transfer function between the

luminosities of the source and equalised compositions. For each pixel in the composi-

tion we then interpolate between these luminosities proportional to that pixel’s salience;

thus contrast is boosted in more salient areas of the composition, greatly improving

the aesthetics of the painting (Figure 3-16).

This produces a final composition such as that of Figure 3-14b. We draw attention to

the fact that major segmentation lines (produced by the steps of Section 3.4.3) and

salient features remain unaffected by this final segmentation of the composition.

3.4.4 Applying a Painterly Finish

The final stage of our algorithm is concerned with creating a painterly effect on the

generated composition, to which there are two sub-stages: colour quantising, and brush

stroke generation.

The colour quantising step should be performed prior to composition, but is described

here for the sake of clarity. We use variance minimisation quantisation [174], to reduce

the colour depth of three independent areas within the image: the distorted salient

features (F ′); the foreground of each distorted image; and the background of each dis-

torted image. Distinction between foreground and background is made by thresholding

upon a simple characteristic property of the image, such as hue or intensity (as was per-

formed during image registration). Our motivation to quantise follows the observation
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that an artist typically paints with a restricted palette, and often approximates colours

as a feature of the Cubist style [81]. We allow a level of control over this effect by

differentiating the level of quantisation over the various image components, and have

found that heavy quantisation of the features and foreground, contrasted by a lesser

degree of background quantisation can produce aesthetically pleasing effects.

At this stage we optionally introduce false colour to the image. Artists such as Braque

and Gris often painted in this manner, contrasting shades of brown or grey with yellows

or blues to pick out image highlights. We use a look-up table based upon a transfer

function, which generates a hue and saturation for a given intensity, calculated from

the original input colour. Typically we define this function by specifying several hue

and saturation values at various intensities, and interpolate between these values to

produce a spectrum of false colour to populate the look-up table.

The second step of the rendering process concerns the generation of “painted” brush

strokes, using our previously described salience adaptive painterly technique (Sec-

tion 3.3). This ensures that strokes from non-salient regions to do encroach upon

salient features during this final rendering step.

3.4.5 Results of Cubist Rendering

We present the results of applying our Cubist algorithm to three image sets; a portrait,

a guitar, and a nude. These subjects were popular choices for artists of the Cubist

period, and we use them to demonstrate the processes of composition, distortion, and

painting respectively.

The original source image sets were captured using a digital video camera, and are

given in Figure 3-17a. Figure 3-17b presents the results of processing the portrait im-

ages; salient features were the ears, eyes, nose and mouth. Figures 3-17b1 and 3-17b2

were created by successive runs of the algorithm, using identical distortion parameters;

the stochastic nature of feature selection produces varying compositions in the same

visual style. Figure 3-17b3 demonstrates the consequence of relaxing the constraints

which maintain proportion between equivalence classes during composition; equivalence

classes are no longer proportionally represented; in this case parameter β = 0.

The nude has been rendered with minimal distortion; salient features were the eyes,

nose, mouth, chest and arm. False colour has been introduced to Figure 3-17c2, using

the complementary colours of blue and orange to contrast highlight and shadow. Many

abstract artists make use of complementary colour pairs in a similar manner.
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Figure 3-17 A gallery of images illustrating the application of our rendering algorithm.

Paintings produced from the guitar images are presented in Figure 3-17d; salient fea-

tures were the hole, neck, bridge and chair arms. Figures 3-17d1, 3-17d2, and 3-17d3

are identical compositions rendered with different distortion and painting parameters.

The values of distortion parameter α′ for each of the renderings is 0.5, 1, and 2 respec-

tively. Notice how the hole in the guitar changes shape, from rectangular to star-like.

By changing only these parameters, a varied range of styles are produced. The finer

segmentation of non-salient regions was not performed on these renderings, to allow

clear demonstration of distortion effects.



PAINTERLY AND CUBIST-STYLE RENDERING USING IMAGE SALIENCE 69

Figure 3-18 A Cubist-style image of Charles Clark MP appeared in the Times Higher
Educational Supplement [3rd January 2003], and was rendered from a set of photographs
supplied by Times reporter Steve Farrar (below).
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Best fit
superquadric 

Figure 3-19 Illustrating our ad-hoc facial registration technique. Left: Images are pro-
cessed using a hue/saturation based eigen-model to identify flesh coloured areas (inset).
Candidate faces (green) are found using our Hough based search strategy (Appendix A.1),
which operates on edge pixels identified in the image (blue) following eigen-analysis. Mid-
dle: Difference map used to quantify the symmetry expressed by image data along the prin-
cipal axis of a candidate superquadric. Right: A rigid template containing eyes and mouth
(yellow) is fitted to the image data by translation and scaling within the ortho-normal basis
of the best fit superquadric. Snake initial contour locations are also transformed with the
template (blue), and subsequently relaxed to identify salient features (Section 3.4.1).

3.5 Personal Picasso: Fully Automating the Cubist Ren-

dering System

The general segmentation problem unfortunately prohibits the fully automatic extrac-

tion of salient features from a general image. However certain classes of image are

well studied in Computer Vision, and can be automatically segmented into such fea-

tures. In this section we describe an implementation of our Cubist rendering system

which adapts techniques from the Vision literature to locate the features of a face

within a single video frame. These features are then tracked through subsequent video

frames, and so substitute the interactive elements of our Cubist algorithm to create a

fully automatic rendering process. The motivation for this case study is to produce a

“Personal Picasso” system capable of rendering Cubist portraits from video. Poten-

tial applications for this system might include installation as a feature in commercial

photo booths. We describe a proof of concept implementation of such a system in the

following subsections.

3.5.1 An Algorithm for Isolating Salient Facial Features

We begin by describing an ad-hoc technique for locating salient facial features within a

single image. The first stage of processing involves the location of the face within the

image; we assume that a full frontal image of a single face will always be present. The

second stage localises the various facial features, e.g. eyes, mouth within the identified

face.
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Locating the face

Faces are located on the basis of their distinctive colour signature and shape, using a

ad-hoc process which draws upon both previous colour-blob based face location strate-

gies (for example, [125]) and the Hough transform based, geometric approach of [106].

It is well known that, despite natural variations in skin tone and colour, skin pigments

tend to form a tight cluster in 2D hue/saturation space [49]. Prior to processing, we

perform a one-time training process which fits an eigenmodel to various samples of

skin colour taken from photographs; this has empirically proven to be a satisfactory

model of the unimodal distribution of pigments. The eigenmodel is specified by a mean

µ, eigenvectors U , and eigenvalues Λ. When processing a novel source image for face

location, we compute the Mahalanobis distance of each novel pixel’s colour with respect

to the trained eigenmodel. The Mahalanobis distance L(c) of a particular pixel with

colour c = (ch, cs)
T (where ch is the colour hue component, and cs the saturation —

both components normalised to range [0,1]) may therefore be written as:

L(c) =
(

(c− µ)TUΛUT (c− µ)
)

1

2 (3.16)

More precisely, taking into account ch = ch mod 1 we use:

L′(c) = min(L(c), L(c+

[

0.5

0

]

)) (3.17)

This produces a modified Mahalanobis field such as that of Figure 3-19, left (inset).

Canny edges [12] are detected within this map to produce a set of binary edge pixels.

Faces vary in their shape; some tend toward elliptical forms whilst others are described

as being more rectangular. In line with this observation we have chosen to model the

face as a superquadric (equation 3.2) which encompasses all of these forms in a single

parameterised framework. Superquadrics are fitted to the edge pixels using a Hough

based search technique, which incorporates a novel implementation strategy to handle

the large parameter space defining potential superquadrics. The reader is referred to

Appendix A.1 for a full discussion of this fitting process. The fitting process results in

a ranked list of 6-tuples, each corresponding to a potential location for a superquadric

(Figure 3-19, left). Each 6-tuple contains a set of parameters: [Cx, Cy, r, a, θ, α],

which correspond to the 2D centroid location, scale, eccentricity, orientation and form

factor respectively.

We take advantage of the natural symmetry of faces to assist in selecting the best fit

superquadric from those returned. We quantify the symmetry (about the principal axis)
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of the image region bounded by each candidate superquadric. For a given superquadric,

the line of symmetry passes through point (Cx, Cy)
T at angle θ degrees from the vertical.

The reflected image p′ of point p in homogeneous form may be obtained using the

following affine transformation:

p′ = T−1R−1FRTp (3.18)

T =







1 0 −Cx

0 1 −Cy

0 0 1






, R =







cos θ − sin θ 0

sin θ cos θ 0

0 0 1






, F =







−1 0 0

0 1 0

0 0 1







We perform the reflection on all pixels within the candidate superquadric, and com-

pute the mean squared error (MSE) of the reflected and original images (Figure 3-19,

middle). We score each candidate by multiplying the integer “evidence” for that su-

perquadric (returned by the Hough search, see Appendix A.1), with unity minus its

MSE. The highest scoring candidate is deemed to correspond to the facial region.

Locating features within the face

Facial features are located using a simple template based correlation scheme. Prior

to processing, several eyes and mouths are manually segmented and registered upon

one another to produce “average” feature templates. We used sixteen samples from

the Olivetti face database [136] for this task; these faces are available only as greyscale

images, and the template matching process thus correlates using only luminance data.

The pixel data for each template is stored, along with the average triangle formed by

the centroids of the two eyes and the mouth. This results in a rigid, planar template

of the three features, which we attempt to register on to the facial region identified at

run-time.

Registration is a two step process. First, the basis of the template is rotated to align

with the ortho-normal basis of the superquadric bounding the facial region. Second,

the template is subjected to translation (Tx, Ty)
T and uniform scaling s in order to min-

imise the MSE between the template and the image data. Minimisation is performed

using a Nelder-Mead search [114] to locate the optimal triple (Tx, Ty, s). Coarsely

fitting shapes (circles for the eyes, rectangles for other features) are also drawn onto

the template prior to processing. The vertices of these shapes form the initial control

points for the active contours (snakes) which are relaxed on to salient features as per

Section 3.4.1 (Figure 3-19, right), once the template has been fitted. The template also

assigns preset equivalence class categories to the localised features, for example “eye”,

“nose” etc.
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Note that we assume that this initial image contains a full frontal image of the face free

from occlusion; though this image may be subjected to affine variations. This seems a

reasonable constraint to impose given the photo booth application that motivates this

case study.

3.5.2 Tracking the Isolated Salient Features

We can further automate the Cubist system by tracking identified salient features over

consecutive frames of video. This implies that a temporal dependency must exist be-

tween source images, which has not been a constraint on the process until this point.

However since the majority of source imagery is likely to be captured in the form of

video, and this may be acceptable in the majority of cases.

The tracking process commences directly after the snake relaxation step for the initial

frame (see previous subsection). We write p
i

to represent the ith of n inhomogeneous

control points describing the spline fitted about a salient feature. We may write these

points as a column vector to obtain a point φ:

φ =
(

pT
1
, pT

2
, ..., pT

n

)T
∈ <2n (3.19)

The problem of tracking a salient feature from one frame to the next is now reformulated

to that of determining the mapping of the feature’s bounding spline φ to a new point

φ′ = M(φ) in the high dimensional space <2n. If we assume all points on the feature

boundary to be co-planar, this mapping M(.) decomposes into a homography H plus

some additive term representing spatial deformation s. Writing P as a homogeneous

representation of the points encoded in φ:

P =

[

p
1
, p

2
, ..., p

n

1

]

(3.20)

we write the mapping as:

P ′ = HP + s (3.21)

If we assume that the object being tracked deforms very little from frame to frame,

then all image-space deformation is due to viewpoint change. Under these conditions,

homography H well describes the mapping M(.):

H =







h1 h2 h3

h4 h5 h6

h7 h8 h9






(3.22)
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where hj is the jth component of the homography H (by convention, H is normalised

such that h9 = 1; the transformation has eight degrees of freedom). We can therefore

consider an eight dimensional subspace in <2n, within which points corresponding to

valid splines (and so tracked features) will approximately lie3. Deviation from this

space corresponds to feature shape deformation during tracking. We assume the man-

ifold of valid splines to be locally linear and so well approximated by a hyper-plane

(this assumption is justified momentarily). The bases of this plane are obtained by

computing the Jacobian of M(.). Applying a Taylor expansion of 1st order to M(.) we

obtain:

M(φ+ dφ) = M(φ) +5T
M(φ)

dφ (3.23)

where 5T
M(φ)

is the gradient of M(φ) at φ. Under our assumption that M(.) varies

only by homography, then 5
M(φ)

may be written as:

5
M(φ)

=













∂φ
1

∂h1

∂φ
1

∂h2
...

∂φ
1

∂h8

∂φ
2

∂h1

∂φ
2

∂h2
...

∂φ
2

∂h8

... ... ... ...
∂φ

2n

∂h1

∂φ
2n

∂h2
...

∂φ
2n

∂h8













(3.24)

where
∂φ

i

∂hj
denotes the shift of the ith control point under a small change of the jth

component of the homography.

The basis of the valid subspace corresponds to the eight columns of 5
M(φ)

, scaled by

the reciprocal of the square of their respective L2 norms. This process compensates

for the greater influence over motion that some homography components (e.g. pro-

jections) hold over others (e.g. translations) given similar numerical variation. The

remaining null space <2n−8 accounts for arbitrary shape deformations of the tracked

spline. Generating small normal variate offsets from φ within the homography space

basis set generates “similar” splines, related by homography to the spline specified by φ

(see Figure 3-20). Notice that as projections are cast further from the original contour

they tend away from homographies and begin to exhibit shape deformations. This is

because our linear approximation is only local to φ, and deteriorates as we move further

from φ so digressing from the space of valid contours into the shape deformation (null)

space.

A two stage process is employed to track features. First we determine the homography

3In fact, our <2n parameter space was chosen specifically because of its support for shape change due
to homography. Such support is not generally present for any parameter space; consider, for example,
the 6D parameter space of the superquadric (Appendix A.1).
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Figure 3-20 The bounding spline of a salient feature (the guitar hole) after snake relax-
ation (dark blue). The three leftmost images show variation in homography space using
normal variates of standard deviation 20, 50, and 100 (from left to right). Shape deforma-
tion becomes apparent with greater standard deviation as the local linear approximation
deteriorates. By contrast the rightmost image shows variation in the null (arbitrary shape
deformation) space.

that best maps the feature from one frame to the next. In this context the “best”

mapping corresponds to a minimisation of the mean squared error (MSE) E(.) between

the RGB colour values of pixels bounded by the spline in the current frame It(.) and

those bounded by the putative spline location in the next frame It+1(.):

E(Mi(.);φ, I) =
1

N

∣

∣It+1(Mi(φ))− It(φ)
∣

∣

2
(3.25)

where N is the number of pixels bounded by spline Mi(φ). M(.)i is a putative mapping

(homography) obtained by local stochastic sampling in the valid subspace as previously

described — we use a random variate centred at φ, with a preset standard deviation

σ. Choice of σ effectively determines the maximum inter-frame distance an object can

move, such that we may continue to track it; note that σ can not be too large, or the

locally linear approximation to the homography breaks down. Values up to around 50

are reasonable for video frame size images; lower values are possible for tracking slower

movements. This process yields an approximate grouping contour which is used as the

initial position for a snake which is iteratively relaxed to account for any shape defor-

mation in the feature (as per the method of Section 3.4.1). We perform this relaxation

to take into account shape deformations, which we do not wish to track explicitly. This

is due to their high dimensionality and unconstrained nature, which has been shown to

cause unstable tracking in the absence of a predetermined, specific motion model [84]

(which we did not wish to introduce for reasons of generality).

This approach does not yet take into account the possibility of occlusion — however

features can become occluded when subjected to large camera viewpoint changes. We

handle this problem in two ways. First, we may choose to track individual features

(as in Figure 3-20), or the entire set of features simultaneously under the assumption

that all features are co-planar in the world. This latter approach holds the advantage
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Figure 3-21 Four frames of a source video after image registration. Features have been
tracked as a planar group, and each active contour subsequently relaxed to yield a salient
feature boundary (shown in yellow). The corresponding Cubist painting is on the right.

that if one salient feature, say an eye, rotates away from the view of the camera, the

other features may still be tracked. This yields a robust common homography under

which all features are assumed to have moved. We have found this approach to work

acceptably well for faces (Figure 3-21). Second, if the MSE for a feature (equation 3.25)

rises above a preset upper threshold, then that feature is deemed to be occluded. In

such cases, the feature is not to be sampled from the current frame, to prevent garbled

image fragments being forwarded to the composition engine in place of the occluded

feature. The equivalence classes attached to a feature persist over time during tracking.

We stated earlier that a locally linear approximation to the homography space was

satisfactory for our application. We have shown this to be true by examining the 2nd

order Taylor expansion of M(.). This results in eight second order Jacobians, which we

observe have determinants close to zero in all but the cases in which h7 and h8 vary.

Thus the valid space is approximately linear except for the projective components of

the homography. If we make the intuitively valid assumption that that change of view-

point is small (relative to other homography components) from one frame to another,

then a linear approximation to the space is justified.

The decomposition approach allows us to track robustly since we restrict the possible

deformations of the contour to those caused by a change of viewpoint, which we assume

accounts for the majority of deformation in the 2D scene projection. However, there

are further advantages gained through decomposition of motion into a homography

plus some general shape deformation. As each transform φ′ = M(φ) is computed, we

calculate a motion vector φ′ − φ in the valid subspace <8. Based on the line integral

of the path traced in this space, we are able to quantify the magnitude of change of

viewpoint. Since we approximate the space to be locally linear we are justified in using

a Euclidean distance to compute this inter-frame distance; however the path integral

approach is necessary over larger time periods, since we have shown the space to be

globally non-linear. When this accumulated distance rises above a certain threshold,
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we sample the current frame from the video for use in the composition. Thus the selec-

tion of frames for composition is also automated (subject to the user setting a suitable

threshold for the integral function).

Future work might attempt to further decompose motion into the various components

of the homography to estimate how the feature has translated, rotated etc. Currently

the Cubist algorithm performs a translational image registration using distinct colour

signatures within the image. Using the homography to determine an inverse translation

may allow us to register images regardless of their colour characteristics, and we predict

that this may improve the generality of the algorithm.

3.6 Summary and Discussion

We have argued that the paradigm of spatial low-level processing limits AR in two ways.

First, that quality of rendering suffers since magnitude of high frequency content, rather

than the perceptual importance, of artifacts governs emphasis during rendering. We

have shown that addressing this limitation demands global image analysis, rather than

the spatially local approach so far adopted by AR. Second, that the spatially local

nature of processing limits AR to low level, stroke based styles. We argued that the

synthesis of compositional forms of art, such as Cubism, can not be achieved without

processing images at a spatially higher level than that of local pixel neighbourhood

operations.

In this chapter we introduced a global salience measure to AR, to determine the rela-

tive importance of image regions. We applied this measure to propose two novel AR

algorithms, which respectively addressed each of the AR limitations identified in the

previous paragraph. The first was a single-pass AR algorithm capable of rendering

photographs in a painterly style reminiscent of pointillism. This algorithm adaptively

varies the emphasis in a painting to abstract away non-salient detail, and emphasise

salient detail. The second was an algorithm capable of producing compositions in a

style reminiscent of Cubism. Uniquely, this algorithm made use of salient features (eyes,

ears, etc.) as the atomic element in the painting, rather than the low-level stroke. The

two algorithms respectively demonstrate how a spatially higher level of image analysis

can improve the aesthetic quality of renderings (more closely mimicking the practice

of human artists), and extend the gamut of AR beyond stroke based rendering to en-

compass compositional artistic styles such Cubism.

There are a number of directions in which this work might be developed further. We

have shown the introduction of a global salience measure can remove limitations im-
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posed by spatially local nature of current AR. Although this rarity based salience

measure is new to computer graphics, it is quite simplistic. The definition of image

salience is highly subjective and context sensitive. Consider a snap-shot of a crowd: in

one scenario a particular face might be salient (for example, searching for a friend); in

another scenario (for example, crowd control), each face might hold equivalent salience.

The development of image salience measures is an area of considerable interest in Com-

puter Vision, and no doubt other global salience measures might be substituted for our

own — the loose coupling between the salience measure and rendering steps facilitates

this. Indeed, in Chapter 4 we make use of a more subjective, user trained measure

of salience to drive a more sophisticated salience adaptive painterly rendering process,

which follows on from this work.

The Cubist rendering algorithm is an illustration of the potential expansion of AR’s

gamut of artistic styles that can be achieved by considering spatially higher level fea-

tures within a scene. However to achieve this higher level of segmentation we must

impose a restrictive model upon the scene, removing the need for interaction, at the

cost of generality. It is unfortunate that contemporary Computer Vision techniques

limit full automation to only a few well studied cases. However, interactive group-

ing typically takes less than one minute of user time, and so we are content with our

method as a compromise between a general system and automation. As regards the

“Personal Picasso” proof of concept system, although the face localisation algorithm

is reasonably robust, the location of facial features themselves leaves something to be

desired. Likewise, the tracker is adequate but could be improved to be more robust

to occlusion. The implementation of a more sophisticated facial feature location and

tracking system for the Cubist renderer is a live BSc. project at Bath.

Although Chapter 4 serves as a continuation of the pilot painterly rendering algorithm

presented in this Chapter, there are a number of interesting directions the Cubist ren-

dering work might take. The depiction of movement within a static image is a unique

contribution to AR, but may hold further applications. For example, the production

of static “thumb-nail” images to help summarise and index video content. We might

consider undertaking a compositional analysis in order to more aesthetically place our

high level features, and progress yet further toward emulating Cubism; however we be-

lieve such an analysis is a considerable challenge that is not necessary to demonstrate

the synthesis of Cubist-like renderings are made possible through higher level spatial

analysis. We might revisit the way in which we apply paint, so that it appears more in

the tradition of a particular artist, but there is no compelling reason to focus our work

in such a way at this stage: the manipulation of high level features is the only neces-

sary step to producing images that can be classified as “Cubist” or, at least, “Cubist
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influenced”.

A higher level of analysis still, might be applied to extract salient features from im-

age; perhaps a full 3D scene reconstruction and re-projection from novel perspectives

to generate alternative Cubist-like styles. Perhaps alternative global analyses of the

image might generate aesthetically pleasing abstract artwork. For example, one might

investigate use of the Hough transform to identify target shapes within an image, taken

from a user defined “shape library”. The subsequent rendering of those shapes may pro-

vide a basis for synthesising alternative abstract artistic styles. Such possibilities lend

further credence to our argument that higher level spatial analysis opens the doorway

to a wide range of otherwise unobtainable artistic rendering styles.


